Enhancing Lte Rss for a Robust Path Loss Analysis with Noise Removal

Seyi E. Olukanni, J. Isabona, I. Odesanya
{"title":"Enhancing Lte Rss for a Robust Path Loss Analysis with Noise Removal","authors":"Seyi E. Olukanni, J. Isabona, I. Odesanya","doi":"10.5815/ijigsp.2023.03.05","DOIUrl":null,"url":null,"abstract":": Wavelet transform has become a popular tool for signal denoising due to its ability to analyze signals effectively in both time and frequency domains. This is important because the information that is not visible in the time domain can be seen in the frequency domain. However, there are many wavelet families and thresholding techniques (such as haar, Daubechies, symlets, coiflets, meyer Gaussian, morlet, etc) thatare available for the analysis of signals, and choosing the best out of them all is usually time-consuming, thus making it a difficult task for researchers. In this article","PeriodicalId":378340,"journal":{"name":"International Journal of Image, Graphics and Signal Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image, Graphics and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijigsp.2023.03.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: Wavelet transform has become a popular tool for signal denoising due to its ability to analyze signals effectively in both time and frequency domains. This is important because the information that is not visible in the time domain can be seen in the frequency domain. However, there are many wavelet families and thresholding techniques (such as haar, Daubechies, symlets, coiflets, meyer Gaussian, morlet, etc) thatare available for the analysis of signals, and choosing the best out of them all is usually time-consuming, thus making it a difficult task for researchers. In this article
基于去噪的Lte Rss鲁棒路径损耗分析
由于小波变换能够在时域和频域中有效地分析信号,它已成为一种流行的信号去噪工具。这一点很重要,因为在时域中不可见的信息可以在频域中看到。然而,有许多小波族和阈值技术(如haar, Daubechies, symlets, coiflets, meyer - Gaussian, morlet等)可用于信号分析,并且从中选择最好的通常是耗时的,因此对研究人员来说是一项艰巨的任务。在本文中
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信