Duncan A. H. Williams, B. Fazenda, V. Williamson, György Fazekas
{"title":"Biophysiologically synchronous computer generated music improves performance and reduces perceived effort in trail runners","authors":"Duncan A. H. Williams, B. Fazenda, V. Williamson, György Fazekas","doi":"10.5281/ZENODO.4813174","DOIUrl":null,"url":null,"abstract":"Music has previously been shown to be beneficial in improving runners performance in treadmill based experiments. This paper evaluates a generative music system, HEARTBEATS, designed to create biosignal synchronous music in real-time according to an individual athlete’s heart-rate or cadence (steps per minute). The tempo, melody, and timbral features of the generated music are modulated according to biosensor input from each runner using a wearable Bluetooth sensor. We compare the relative performance of athletes listening to heart-rate and cadence synchronous music, across a randomized trial (N=57) on a trail course with 76ft of elevation. Participants were instructed to continue until perceived effort went beyond an 18 using the Borg rating of perceived exertion scale. We found that cadence-synchronous music improved performance and decreased perceived effort in male runners, and improved performance but not perceived effort in female runners, in comparison to heart-rate synchronous music. This work has implications for the future design and implementation of novel portable music systems and in music-assisted coaching.","PeriodicalId":161317,"journal":{"name":"New Interfaces for Musical Expression","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Interfaces for Musical Expression","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.4813174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Music has previously been shown to be beneficial in improving runners performance in treadmill based experiments. This paper evaluates a generative music system, HEARTBEATS, designed to create biosignal synchronous music in real-time according to an individual athlete’s heart-rate or cadence (steps per minute). The tempo, melody, and timbral features of the generated music are modulated according to biosensor input from each runner using a wearable Bluetooth sensor. We compare the relative performance of athletes listening to heart-rate and cadence synchronous music, across a randomized trial (N=57) on a trail course with 76ft of elevation. Participants were instructed to continue until perceived effort went beyond an 18 using the Borg rating of perceived exertion scale. We found that cadence-synchronous music improved performance and decreased perceived effort in male runners, and improved performance but not perceived effort in female runners, in comparison to heart-rate synchronous music. This work has implications for the future design and implementation of novel portable music systems and in music-assisted coaching.