New face expression recognition using polar angular radial transform and principal component analysis

Imène Taleb, Madani Ould Mammar, A. Ouamri
{"title":"New face expression recognition using polar angular radial transform and principal component analysis","authors":"Imène Taleb, Madani Ould Mammar, A. Ouamri","doi":"10.1504/IJBM.2018.10012751","DOIUrl":null,"url":null,"abstract":"This paper presents a new method for facial expression recognition (FER) using a polar mathematical development based on the angular radial transformation (ART). This method is combined by polar angular radial transform (P-ART) and principal component analysis (PCA). The new ART is a powerful descriptor in terms of robustness, description form and way more information-rich compared to the conventional Cartesian descriptor. Support vector machine (SVM) training is used to recognise the facial expression for an input face image. Finally, the experimental results show the performance of the P-ART and the PCA. The fusion of these two techniques can be better than other existing methods of recognition of facial expression. During the experiment, the basis of facial given Japanese female facial expression (JAFFE) and the Cohn-Kanade databases has been used.","PeriodicalId":262486,"journal":{"name":"Int. J. Biom.","volume":"17 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Biom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJBM.2018.10012751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a new method for facial expression recognition (FER) using a polar mathematical development based on the angular radial transformation (ART). This method is combined by polar angular radial transform (P-ART) and principal component analysis (PCA). The new ART is a powerful descriptor in terms of robustness, description form and way more information-rich compared to the conventional Cartesian descriptor. Support vector machine (SVM) training is used to recognise the facial expression for an input face image. Finally, the experimental results show the performance of the P-ART and the PCA. The fusion of these two techniques can be better than other existing methods of recognition of facial expression. During the experiment, the basis of facial given Japanese female facial expression (JAFFE) and the Cohn-Kanade databases has been used.
基于极角径向变换和主成分分析的人脸表情识别新方法
提出了一种基于角径向变换(ART)的极坐标数学发展的面部表情识别新方法。该方法将极角径向变换(P-ART)和主成分分析(PCA)相结合。与传统的笛卡尔描述符相比,新的ART在鲁棒性、描述形式和更丰富的信息方面都是一个强大的描述符。利用支持向量机(SVM)训练对输入的人脸图像进行人脸表情识别。最后,通过实验验证了P-ART和PCA的性能。这两种技术的融合可以比其他现有的面部表情识别方法更好。在实验中,我们使用了基于面部给定的日本女性面部表情(JAFFE)和Cohn-Kanade数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信