R. Bartelt, D. Meyer, C. Heising, Y. Khimchenko, V. Staudt
{"title":"Simulation of large-scale electric-ship DC-grids using the simulation tool VIAvento","authors":"R. Bartelt, D. Meyer, C. Heising, Y. Khimchenko, V. Staudt","doi":"10.1109/ests.2013.6523745","DOIUrl":null,"url":null,"abstract":"DC-ship grids are converter-dominated grids where the overall stability very strongly depends on the controls of the involved converters. Due to the non-linear structure of the control algorithms, a realistic stability assessment can only be achieved in time domain. To avoid non-realistic simulation results, a holistic model of the overall system including continuous and discrete elements and their original control algorithms has to be generated. Within this paper, the modelling approach for power-electronic devices including their non-ideal characteristics in time domain in the new simulation tool VIAvento is presented. The non-ideal characteristics are described briefly and the capability of this approach is demonstrated with simulation results of a DC grid with several independent converters in multi-level topology. Additionally, results of a resonant converter for lower power are given.","PeriodicalId":119318,"journal":{"name":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Electric Ship Technologies Symposium (ESTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ests.2013.6523745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
DC-ship grids are converter-dominated grids where the overall stability very strongly depends on the controls of the involved converters. Due to the non-linear structure of the control algorithms, a realistic stability assessment can only be achieved in time domain. To avoid non-realistic simulation results, a holistic model of the overall system including continuous and discrete elements and their original control algorithms has to be generated. Within this paper, the modelling approach for power-electronic devices including their non-ideal characteristics in time domain in the new simulation tool VIAvento is presented. The non-ideal characteristics are described briefly and the capability of this approach is demonstrated with simulation results of a DC grid with several independent converters in multi-level topology. Additionally, results of a resonant converter for lower power are given.