{"title":"Performance study of co-located IEEE 802.15.4-TSCH networks: Interference and coexistence","authors":"Sahar Ben Yaala, Fabrice Théoleyre, R. Bouallègue","doi":"10.1109/ISCC.2016.7543790","DOIUrl":null,"url":null,"abstract":"With the large deployment of smart and heterogeneous devices, interest of researchers to define new protocols to meet Internet of Things (IoT) requirements is growing. A particular interest was accorded to define a robust MAC layer for wireless sensor networks, in order to reduce interference caused by other co-located networks and applications using the ISM band. This paper gives a comprehensive study of the Time Slotted channel Hopping IEEE802.15.4, part of the 6TiSCH stack and explains how its TDMA approach improves the reliability with performance guarantees. We also investigate analytically and experimentally the impact of the scheduling algorithm on the reliability. Then, we provide an experimental evaluation of co-located WSN using the FiT-IoT LAB testbed and the OpenWSN Stack. Performance analysis of IEEE802.15.4e-TSCH is achieved with a variable number of co-located synchronized or unsynchronized instances. While this standard is robust for lightly loaded networks, new mechanisms have to be proposed when we have too much traffic or too many interfering networks.","PeriodicalId":148096,"journal":{"name":"2016 IEEE Symposium on Computers and Communication (ISCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on Computers and Communication (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2016.7543790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
With the large deployment of smart and heterogeneous devices, interest of researchers to define new protocols to meet Internet of Things (IoT) requirements is growing. A particular interest was accorded to define a robust MAC layer for wireless sensor networks, in order to reduce interference caused by other co-located networks and applications using the ISM band. This paper gives a comprehensive study of the Time Slotted channel Hopping IEEE802.15.4, part of the 6TiSCH stack and explains how its TDMA approach improves the reliability with performance guarantees. We also investigate analytically and experimentally the impact of the scheduling algorithm on the reliability. Then, we provide an experimental evaluation of co-located WSN using the FiT-IoT LAB testbed and the OpenWSN Stack. Performance analysis of IEEE802.15.4e-TSCH is achieved with a variable number of co-located synchronized or unsynchronized instances. While this standard is robust for lightly loaded networks, new mechanisms have to be proposed when we have too much traffic or too many interfering networks.