Advancing photonic design and measurements with artificial intelligence

Z. Kudyshev, S. Bogdanov, Zachariah Olson, Xiaohui Xu, D. Sychev, A. Kildishev, V. Shalaev, A. Boltasseva
{"title":"Advancing photonic design and measurements with artificial intelligence","authors":"Z. Kudyshev, S. Bogdanov, Zachariah Olson, Xiaohui Xu, D. Sychev, A. Kildishev, V. Shalaev, A. Boltasseva","doi":"10.1117/12.2594790","DOIUrl":null,"url":null,"abstract":"Discovering novel, unconventional optical designs in combination with advanced machine-learning assisted data analysis techniques can uniquely enable new phenomena and breakthrough advances in many areas including imaging, sensing, energy, and quantum information technology. It demonstrated that compared to other inverse-design approaches that require extreme computation power to undertake a comprehensive search within a large parameter space, machine learning assisted topology optimization can expand the design space while improving the computational efficiency. This talk will highlight our most recent findings on 1) merging topology optimization with artificial-intelligence-assisted algorithms and 2) integrating machine-learning based analysis with photonic design and quantum optical measurements.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2594790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Discovering novel, unconventional optical designs in combination with advanced machine-learning assisted data analysis techniques can uniquely enable new phenomena and breakthrough advances in many areas including imaging, sensing, energy, and quantum information technology. It demonstrated that compared to other inverse-design approaches that require extreme computation power to undertake a comprehensive search within a large parameter space, machine learning assisted topology optimization can expand the design space while improving the computational efficiency. This talk will highlight our most recent findings on 1) merging topology optimization with artificial-intelligence-assisted algorithms and 2) integrating machine-learning based analysis with photonic design and quantum optical measurements.
用人工智能推进光子设计和测量
发现新颖的、非常规的光学设计与先进的机器学习辅助数据分析技术相结合,可以在成像、传感、能源和量子信息技术等许多领域实现独特的新现象和突破性进展。研究表明,与其他需要极高计算能力才能在大参数空间内进行全面搜索的反设计方法相比,机器学习辅助拓扑优化可以在提高计算效率的同时扩展设计空间。本次演讲将重点介绍我们在以下方面的最新发现:1)将拓扑优化与人工智能辅助算法相结合;2)将基于机器学习的分析与光子设计和量子光学测量相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信