Fluid dynamical systems as Hamiltonian boundary control systems

A. Schaft, B. Maschke
{"title":"Fluid dynamical systems as Hamiltonian boundary control systems","authors":"A. Schaft, B. Maschke","doi":"10.1109/CDC.2001.980911","DOIUrl":null,"url":null,"abstract":"It is shown how the geometric framework for distributed-parameter port-controlled Hamiltonian systems can be adapted to formulate ideal isentropic compressible fluids with nonzero energy flow through the boundary of the spatial domain as Hamiltonian boundary control systems. The key ingredient is the modification of the Stokes-Dirac structure to a Dirac structure defined on the space of mass density 3-forms and velocity 1-forms, incorporating three-dimensional convection. Some initial steps towards stabilization of these boundary control systems, based on the generation of Casimir functions for the closed-loop Hamiltonian system, are discussed.","PeriodicalId":131411,"journal":{"name":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2001.980911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

It is shown how the geometric framework for distributed-parameter port-controlled Hamiltonian systems can be adapted to formulate ideal isentropic compressible fluids with nonzero energy flow through the boundary of the spatial domain as Hamiltonian boundary control systems. The key ingredient is the modification of the Stokes-Dirac structure to a Dirac structure defined on the space of mass density 3-forms and velocity 1-forms, incorporating three-dimensional convection. Some initial steps towards stabilization of these boundary control systems, based on the generation of Casimir functions for the closed-loop Hamiltonian system, are discussed.
作为哈密顿边界控制系统的流体动力系统
展示了如何将分布参数端口控制哈密顿系统的几何框架用于将具有非零能量的理想等熵可压缩流体作为哈密顿边界控制系统流过空间域的边界。关键是将Stokes-Dirac结构修改为定义在质量密度3-form和速度1-form空间上的Dirac结构,并包含三维对流。基于闭环哈密顿系统的卡西米尔函数的生成,讨论了这些边界控制系统趋于稳定的一些初步步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信