An information-theoretic measure to evaluate parsing difficulty across treebanks

A. Corazza, A. Lavelli, G. Satta
{"title":"An information-theoretic measure to evaluate parsing difficulty across treebanks","authors":"A. Corazza, A. Lavelli, G. Satta","doi":"10.1145/2407736.2407737","DOIUrl":null,"url":null,"abstract":"With the growing interest in statistical parsing, special attention has recently been devoted to the problem of comparing different treebanks to assess which languages or domains are more difficult to parse relative to a given model. A common methodology for comparing parsing difficulty across treebanks is based on the use of the standard labeled precision and recall measures. As an alternative, in this article we propose an information-theoretic measure, called the expected conditional cross-entropy (ECC). One important advantage with respect to standard performance measures is that ECC can be directly expressed as a function of the parameters of the model. We evaluate ECC across several treebanks for English, French, German, and Italian, and show that ECC is an effective measure of parsing difficulty, with an increase in ECC always accompanied by a degradation in parsing accuracy.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2407736.2407737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

With the growing interest in statistical parsing, special attention has recently been devoted to the problem of comparing different treebanks to assess which languages or domains are more difficult to parse relative to a given model. A common methodology for comparing parsing difficulty across treebanks is based on the use of the standard labeled precision and recall measures. As an alternative, in this article we propose an information-theoretic measure, called the expected conditional cross-entropy (ECC). One important advantage with respect to standard performance measures is that ECC can be directly expressed as a function of the parameters of the model. We evaluate ECC across several treebanks for English, French, German, and Italian, and show that ECC is an effective measure of parsing difficulty, with an increase in ECC always accompanied by a degradation in parsing accuracy.
一种评估树库解析难度的信息论方法
随着对统计解析的兴趣日益浓厚,最近人们特别关注比较不同树库的问题,以评估相对于给定模型,哪些语言或领域更难解析。比较树库解析难度的一种常用方法是基于标准标记精度和召回度量的使用。作为替代方案,在本文中我们提出了一种信息论度量,称为期望条件交叉熵(ECC)。关于标准性能度量的一个重要优点是,ECC可以直接表示为模型参数的函数。我们在英语、法语、德语和意大利语的几个树库中评估了ECC,并表明ECC是分析难度的有效度量,ECC的增加总是伴随着解析精度的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信