Recurrent Neural Network Based Action Recognition from 3D Skeleton Data

Parul Shukla, K. K. Biswas, P. Kalra
{"title":"Recurrent Neural Network Based Action Recognition from 3D Skeleton Data","authors":"Parul Shukla, K. K. Biswas, P. Kalra","doi":"10.1109/SITIS.2017.63","DOIUrl":null,"url":null,"abstract":"In this paper, we present an approach for human action recognition from 3D skeleton data. The proposed method utilizes Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) to learn the temporal dependency between joints' positions. The proposed architecture uses a hierarchical scheme for aggregating the learned responses of various RNN units. We demonstrate the effectiveness of using only a few joints as opposed to all the available joints' position for action recognition. The proposed approach is evaluated on well-known publicly available MSR-Action3D dataset.","PeriodicalId":153165,"journal":{"name":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2017.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we present an approach for human action recognition from 3D skeleton data. The proposed method utilizes Recurrent Neural Network (RNN) and Long Short Term Memory (LSTM) to learn the temporal dependency between joints' positions. The proposed architecture uses a hierarchical scheme for aggregating the learned responses of various RNN units. We demonstrate the effectiveness of using only a few joints as opposed to all the available joints' position for action recognition. The proposed approach is evaluated on well-known publicly available MSR-Action3D dataset.
基于循环神经网络的三维骨骼动作识别
本文提出了一种基于三维骨骼数据的人体动作识别方法。该方法利用递归神经网络(RNN)和长短期记忆(LSTM)来学习关节位置之间的时间依赖性。所提出的体系结构使用分层方案来聚合各种RNN单元的学习响应。我们证明了仅使用少数关节而不是所有可用关节位置进行动作识别的有效性。该方法在知名的公开可用的MSR-Action3D数据集上进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信