Neural network-based modeling of the plasma-enhanced chemical vapor deposition of silicon dioxide

Seung-Soo Han, M. Ceiler, S. A. Bidstrup, Paul A. Kohl, Gary S. May
{"title":"Neural network-based modeling of the plasma-enhanced chemical vapor deposition of silicon dioxide","authors":"Seung-Soo Han, M. Ceiler, S. A. Bidstrup, Paul A. Kohl, Gary S. May","doi":"10.1109/IEMT.1993.398164","DOIUrl":null,"url":null,"abstract":"The properties of plasma enhanced chemical vapor deposition (PECVD) silicon dioxide films are modeled using neural networks. This method is simple, extremely useful and readily applicable to the empirical modeling of such complex plasma processes. In characterizing the SiO/sub 2/ films, it is found that the dominant film property is its impurity concentration. The impurity concentration dictates the refractive index and permittivity, two critical figures of merit when these films are used as interlayer dielectric and in optoelectronic applications. The most important parameters in determining the impurity concentration of the films are substrate temperature and pressure. Increasing the substrate temperature causes the impurity concentration to decrease. This drop in impurity concentration causes an increase in refractive index and a decrease in permittivity. Increasing pressure has almost the same effect, causing a decrease in permittivity.<<ETX>>","PeriodicalId":206206,"journal":{"name":"Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 15th IEEE/CHMT International Electronic Manufacturing Technology Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEMT.1993.398164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The properties of plasma enhanced chemical vapor deposition (PECVD) silicon dioxide films are modeled using neural networks. This method is simple, extremely useful and readily applicable to the empirical modeling of such complex plasma processes. In characterizing the SiO/sub 2/ films, it is found that the dominant film property is its impurity concentration. The impurity concentration dictates the refractive index and permittivity, two critical figures of merit when these films are used as interlayer dielectric and in optoelectronic applications. The most important parameters in determining the impurity concentration of the films are substrate temperature and pressure. Increasing the substrate temperature causes the impurity concentration to decrease. This drop in impurity concentration causes an increase in refractive index and a decrease in permittivity. Increasing pressure has almost the same effect, causing a decrease in permittivity.<>
基于神经网络的等离子体增强化学气相沉积二氧化硅的建模
利用神经网络对等离子体增强化学气相沉积(PECVD)二氧化硅薄膜的性能进行了建模。该方法简单,非常有用,易于应用于此类复杂等离子体过程的经验建模。在对SiO/ sub2 /薄膜进行表征时,发现薄膜的主要性质是杂质浓度。当这些薄膜用作层间介质和光电子应用时,杂质浓度决定了折射率和介电常数,这是两个关键的优点数字。决定薄膜杂质浓度的最重要参数是衬底温度和压力。升高衬底温度可使杂质浓度降低。杂质浓度的下降导致折射率的增加和介电常数的降低。增加压力几乎有相同的效果,引起介电常数的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信