Oblivious Neural Network Predictions via MiniONN Transformations

Jian Liu, Mika Juuti, Yao Lu, N. Asokan
{"title":"Oblivious Neural Network Predictions via MiniONN Transformations","authors":"Jian Liu, Mika Juuti, Yao Lu, N. Asokan","doi":"10.1145/3133956.3134056","DOIUrl":null,"url":null,"abstract":"Machine learning models hosted in a cloud service are increasingly popular but risk privacy: clients sending prediction requests to the service need to disclose potentially sensitive information. In this paper, we explore the problem of privacy-preserving predictions: after each prediction, the server learns nothing about clients' input and clients learn nothing about the model. We present MiniONN, the first approach for transforming an existing neural network to an oblivious neural network supporting privacy-preserving predictions with reasonable efficiency. Unlike prior work, MiniONN requires no change to how models are trained. To this end, we design oblivious protocols for commonly used operations in neural network prediction models. We show that MiniONN outperforms existing work in terms of response latency and message sizes. We demonstrate the wide applicability of MiniONN by transforming several typical neural network models trained from standard datasets.","PeriodicalId":191367,"journal":{"name":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"560","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3133956.3134056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 560

Abstract

Machine learning models hosted in a cloud service are increasingly popular but risk privacy: clients sending prediction requests to the service need to disclose potentially sensitive information. In this paper, we explore the problem of privacy-preserving predictions: after each prediction, the server learns nothing about clients' input and clients learn nothing about the model. We present MiniONN, the first approach for transforming an existing neural network to an oblivious neural network supporting privacy-preserving predictions with reasonable efficiency. Unlike prior work, MiniONN requires no change to how models are trained. To this end, we design oblivious protocols for commonly used operations in neural network prediction models. We show that MiniONN outperforms existing work in terms of response latency and message sizes. We demonstrate the wide applicability of MiniONN by transforming several typical neural network models trained from standard datasets.
通过MiniONN变换的遗忘神经网络预测
托管在云服务中的机器学习模型越来越受欢迎,但存在隐私风险:向服务发送预测请求的客户需要披露潜在的敏感信息。在本文中,我们探讨了隐私保护预测的问题:在每次预测之后,服务器对客户端的输入一无所知,客户端对模型一无所知。我们提出了MiniONN,这是将现有神经网络转换为以合理效率支持隐私保护预测的遗忘神经网络的第一种方法。与之前的工作不同,MiniONN不需要改变模型的训练方式。为此,我们为神经网络预测模型中的常用操作设计了无关协议。我们展示了MiniONN在响应延迟和消息大小方面优于现有工作。我们通过转换从标准数据集训练的几个典型神经网络模型来证明MiniONN的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信