On the Performance Significance of Boundary Strategies for Firefly Algorithm

T. Kadavy, Michal Pluhacek, R. Šenkeřík, Adam Viktorin
{"title":"On the Performance Significance of Boundary Strategies for Firefly Algorithm","authors":"T. Kadavy, Michal Pluhacek, R. Šenkeřík, Adam Viktorin","doi":"10.1109/SSCI.2018.8628643","DOIUrl":null,"url":null,"abstract":"In this paper, a comparison of a few selected boundary strategies are presented for popular optimization Firefly Algorithm (FA). The problem of boundary constrained optimization was already extensively studied for well-known heuristic optimization Particle Swarm Optimization (PSO). This suggesting importance for similar research for other swarm-based algorithms, like FA. Also, the simple measurement on the tendency of FA particle to violate defined boundaries is presented as well. The recent CEC 17 benchmark suite is used for the performance comparison of the methods and the results are compared and tested for statistical significance.","PeriodicalId":235735,"journal":{"name":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2018.8628643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a comparison of a few selected boundary strategies are presented for popular optimization Firefly Algorithm (FA). The problem of boundary constrained optimization was already extensively studied for well-known heuristic optimization Particle Swarm Optimization (PSO). This suggesting importance for similar research for other swarm-based algorithms, like FA. Also, the simple measurement on the tendency of FA particle to violate defined boundaries is presented as well. The recent CEC 17 benchmark suite is used for the performance comparison of the methods and the results are compared and tested for statistical significance.
边界策略对萤火虫算法性能的意义
本文对目前流行的优化萤火虫算法的几种边界策略进行了比较。边界约束优化问题在著名的启发式粒子群优化(PSO)中得到了广泛的研究。这表明了对其他基于群的算法(如FA)进行类似研究的重要性。此外,还给出了对FA粒子违反定义边界的倾向的简单测量。使用最新的CEC 17基准测试套件对方法进行性能比较,并对结果进行统计显著性比较和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信