Statistical features extraction for multivariate pattern analysis in meditation EEG using PCA

Laxmi Shaw, A. Routray
{"title":"Statistical features extraction for multivariate pattern analysis in meditation EEG using PCA","authors":"Laxmi Shaw, A. Routray","doi":"10.1109/EMBSISC.2016.7508624","DOIUrl":null,"url":null,"abstract":"This work was undertaken to study the specific statistical features of EEG data collected during meditation (Kriya Yoga) and normal conditions. The meditation practice changes the attentional allocation in the human brain to visualize this; statistical features are carefully calculated from different wavelet coefficients to categorize two diverse groups (i.e. Meditators and Non-Meditators). The entire time series of EEG data divided into overlapping segments, and statistical parameters calculated for each of these segments. Instead of using all the data points, we used only a few higher order statistical measures such as variance, kurtosis, relative band energy, Shannon entropy, and Renyi entropy obtained from the data segments. A standard clustering technique, i.e. Principal Component Analysis (PCA) used to get the distinct pattern from the statistical features in EEG. In this paper, we presented a clustering paradigm that used for the pattern analysis between meditators and non-meditators. We measured the EEG signal using 64 channels, with some peripheral physiological measures. 23 participants with varying experience in meditation practice and ten non-meditators (control group) are considered to visualize underlying clusters within the statistical features.","PeriodicalId":361773,"journal":{"name":"2016 IEEE EMBS International Student Conference (ISC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE EMBS International Student Conference (ISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMBSISC.2016.7508624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

This work was undertaken to study the specific statistical features of EEG data collected during meditation (Kriya Yoga) and normal conditions. The meditation practice changes the attentional allocation in the human brain to visualize this; statistical features are carefully calculated from different wavelet coefficients to categorize two diverse groups (i.e. Meditators and Non-Meditators). The entire time series of EEG data divided into overlapping segments, and statistical parameters calculated for each of these segments. Instead of using all the data points, we used only a few higher order statistical measures such as variance, kurtosis, relative band energy, Shannon entropy, and Renyi entropy obtained from the data segments. A standard clustering technique, i.e. Principal Component Analysis (PCA) used to get the distinct pattern from the statistical features in EEG. In this paper, we presented a clustering paradigm that used for the pattern analysis between meditators and non-meditators. We measured the EEG signal using 64 channels, with some peripheral physiological measures. 23 participants with varying experience in meditation practice and ten non-meditators (control group) are considered to visualize underlying clusters within the statistical features.
基于PCA的冥想脑电多变量模式分析统计特征提取
这项工作是为了研究在冥想(克里亚瑜伽)和正常情况下收集的脑电图数据的具体统计特征。冥想练习改变了人类大脑的注意力分配,使之形象化;从不同的小波系数中仔细计算统计特征,将两个不同的群体(即冥想者和非冥想者)分类。将整个时间序列的脑电数据划分为多个重叠段,并计算每个重叠段的统计参数。我们没有使用所有的数据点,而是只使用从数据段中获得的方差、峰度、相对频带能、香农熵和Renyi熵等几个高阶统计度量。一种标准的聚类技术,即主成分分析(PCA),用于从EEG的统计特征中获得明显的模式。在本文中,我们提出了一个用于在冥想者和非冥想者之间进行模式分析的聚类范式。我们采用64个通道测量脑电信号,并辅以一些外周生理测量。23名具有不同冥想实践经验的参与者和10名非冥想者(对照组)被认为在统计特征中可视化潜在集群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信