A Formal Study of Boolean Games with Random Formulas as Payoff Functions

Érik Martin-Dorel, S. Soloviev
{"title":"A Formal Study of Boolean Games with Random Formulas as Payoff Functions","authors":"Érik Martin-Dorel, S. Soloviev","doi":"10.4230/LIPIcs.TYPES.2016.14","DOIUrl":null,"url":null,"abstract":"In this paper, we present a probabilistic analysis of Boolean games. We consider the class of Boolean games where payoff functions are given by random Boolean formulas. This permits to study certain properties of this class in its totality, such as the probability of existence of a winning strategy, including its asymptotic behaviour. With the help of the Coq proof assistant, we develop a Coq library of Boolean games, to provide a formal proof of our results, and a basis for further developments. 2012 ACM Subject Classification Theory of computation → Higher order logic, Theory of computation → Algorithmic game theory, Mathematics of computing → Stochastic processes","PeriodicalId":131421,"journal":{"name":"Types for Proofs and Programs","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Types for Proofs and Programs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.TYPES.2016.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we present a probabilistic analysis of Boolean games. We consider the class of Boolean games where payoff functions are given by random Boolean formulas. This permits to study certain properties of this class in its totality, such as the probability of existence of a winning strategy, including its asymptotic behaviour. With the help of the Coq proof assistant, we develop a Coq library of Boolean games, to provide a formal proof of our results, and a basis for further developments. 2012 ACM Subject Classification Theory of computation → Higher order logic, Theory of computation → Algorithmic game theory, Mathematics of computing → Stochastic processes
以随机公式作为支付函数的布尔博弈的形式化研究
本文给出了布尔对策的一个概率分析。我们考虑一类布尔对策,其中收益函数由随机布尔公式给出。这使得我们可以从总体上研究这类的某些性质,比如一个获胜策略存在的概率,包括它的渐近行为。在Coq证明助手的帮助下,我们开发了一个布尔博弈的Coq库,为我们的结果提供了一个形式化的证明,并为进一步的开发奠定了基础。2012 ACM学科分类:计算理论→高阶逻辑、计算理论→算法博弈论、计算数学→随机过程
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信