Mohammad Alian, Umur Darbaz, G. Dózsa, S. Diestelhorst, Daehoon Kim, N. Kim
{"title":"dist-gem5: Distributed simulation of computer clusters","authors":"Mohammad Alian, Umur Darbaz, G. Dózsa, S. Diestelhorst, Daehoon Kim, N. Kim","doi":"10.1109/ISPASS.2017.7975287","DOIUrl":null,"url":null,"abstract":"When analyzing a distributed computer system, we often observe that the complex interplay among processor, node, and network sub-systems can profoundly affect the performance and power efficiency of the distributed computer system. Therefore, to effectively cross-optimize hardware and software components of a distributed computer system, we need a full-system simulation infrastructure that can precisely capture the complex interplay. Responding to the aforementioned need, we present dist-gem5, a flexible, detailed, and open-source full-system simulation infrastructure that can model and simulate a distributed computer system using multiple simulation hosts. Then we validate dist-gem5 against a physical cluster and show that the latency and bandwidth of the simulated network sub-system are within 18% of the physical one. Compared with the single threaded and parallel versions of gem5, dist-gem5 speeds up the simulation of a 63-node computer cluster by 83.1x and 12.8x, respectively.","PeriodicalId":123307,"journal":{"name":"2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPASS.2017.7975287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33
Abstract
When analyzing a distributed computer system, we often observe that the complex interplay among processor, node, and network sub-systems can profoundly affect the performance and power efficiency of the distributed computer system. Therefore, to effectively cross-optimize hardware and software components of a distributed computer system, we need a full-system simulation infrastructure that can precisely capture the complex interplay. Responding to the aforementioned need, we present dist-gem5, a flexible, detailed, and open-source full-system simulation infrastructure that can model and simulate a distributed computer system using multiple simulation hosts. Then we validate dist-gem5 against a physical cluster and show that the latency and bandwidth of the simulated network sub-system are within 18% of the physical one. Compared with the single threaded and parallel versions of gem5, dist-gem5 speeds up the simulation of a 63-node computer cluster by 83.1x and 12.8x, respectively.