{"title":"Massive Gravity and Lorentz Symmetry","authors":"R. Potting","doi":"10.1142/9789811275388_0012","DOIUrl":null,"url":null,"abstract":"We consider Lorentz-symmetry properties of the ghost-free massive gravity theory proposed by de Rham, Gabadadze, and Tolley. In particular, we present potentially observable effects in gravitational-wave propagation and in Newton's law, including Lorentz-violating signals.","PeriodicalId":104099,"journal":{"name":"CPT and Lorentz Symmetry","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CPT and Lorentz Symmetry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9789811275388_0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider Lorentz-symmetry properties of the ghost-free massive gravity theory proposed by de Rham, Gabadadze, and Tolley. In particular, we present potentially observable effects in gravitational-wave propagation and in Newton's law, including Lorentz-violating signals.