Symmetry of fuzzy data

H. Hel-Or, Shmuel Peleg, D. Avnir
{"title":"Symmetry of fuzzy data","authors":"H. Hel-Or, Shmuel Peleg, D. Avnir","doi":"10.1109/ICPR.1994.576336","DOIUrl":null,"url":null,"abstract":"Symmetry is usually viewed as a discrete feature: an object is either symmetric or non-symmetric. Following the view that symmetry is a continuous feature, a continuous symmetry measure (CSM) has been developed to evaluate symmetries of shapes and objects. In this paper the authors extend the symmetry measure to evaluate the imperfect symmetry of fuzzy shapes, i.e. shapes with uncertain point localization. The authors find the probability distribution of symmetry values for a given fuzzy shape. Additionally, for every such fuzzy shape, the authors find the most probable symmetric shape.","PeriodicalId":312019,"journal":{"name":"Proceedings of 12th International Conference on Pattern Recognition","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 12th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.1994.576336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Symmetry is usually viewed as a discrete feature: an object is either symmetric or non-symmetric. Following the view that symmetry is a continuous feature, a continuous symmetry measure (CSM) has been developed to evaluate symmetries of shapes and objects. In this paper the authors extend the symmetry measure to evaluate the imperfect symmetry of fuzzy shapes, i.e. shapes with uncertain point localization. The authors find the probability distribution of symmetry values for a given fuzzy shape. Additionally, for every such fuzzy shape, the authors find the most probable symmetric shape.
模糊数据的对称性
对称通常被看作是一个离散的特征:一个物体不是对称的就是不对称的。根据对称是一种连续特征的观点,人们提出了一种连续对称测度(CSM)来评价形状和物体的对称性。本文将对称测度推广到模糊形状的不完全对称性,即点定位不确定的形状。给出了给定模糊形状对称值的概率分布。此外,对于每一个这样的模糊形状,作者找到了最可能的对称形状。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信