Design of Experiments within the Mobius Modeling Environment

T. Courtney, Shravan Gaonkar, M. McQuinn, Eric Rozier, W. Sanders, P. Webster
{"title":"Design of Experiments within the Mobius Modeling Environment","authors":"T. Courtney, Shravan Gaonkar, M. McQuinn, Eric Rozier, W. Sanders, P. Webster","doi":"10.1109/QEST.2007.36","DOIUrl":null,"url":null,"abstract":"Models of complex systems often contain model parameters for important rates, probabilities, and initial state values. By varying the parameter values, the system modeler can study the behavior of the system under a wide range of system and environmental assumptions. However, exhaustive exploration of the parameter space of a large model is computationally expensive. Design of experiments techniques provide information about the degree of sensitivity of output variables to various input parameters. Design of experiments makes it possible to find parameter values that optimize measured outputs of the system by running fewer experiments than required by less rigorous techniques. This paper describes the design of experiments techniques that have been integrated in the Mobius tool.","PeriodicalId":249627,"journal":{"name":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fourth International Conference on the Quantitative Evaluation of Systems (QEST 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QEST.2007.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Models of complex systems often contain model parameters for important rates, probabilities, and initial state values. By varying the parameter values, the system modeler can study the behavior of the system under a wide range of system and environmental assumptions. However, exhaustive exploration of the parameter space of a large model is computationally expensive. Design of experiments techniques provide information about the degree of sensitivity of output variables to various input parameters. Design of experiments makes it possible to find parameter values that optimize measured outputs of the system by running fewer experiments than required by less rigorous techniques. This paper describes the design of experiments techniques that have been integrated in the Mobius tool.
Mobius建模环境下的实验设计
复杂系统的模型通常包含重要速率、概率和初始状态值的模型参数。通过改变参数值,系统建模者可以在广泛的系统和环境假设下研究系统的行为。然而,对大型模型的参数空间进行详尽的探索在计算上是昂贵的。实验技术的设计提供了输出变量对各种输入参数的敏感程度的信息。实验设计使得通过运行比不太严格的技术所需的更少的实验来找到优化系统测量输出的参数值成为可能。本文描述了集成在Mobius工具中的实验技术的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信