Horizon: a multi-abstraction framework for graph analytics

Adnan Haider, Fabio Checconi, Xinyu Que, L. Schneidenbach, Daniele Buono, Xian-He Sun
{"title":"Horizon: a multi-abstraction framework for graph analytics","authors":"Adnan Haider, Fabio Checconi, Xinyu Que, L. Schneidenbach, Daniele Buono, Xian-He Sun","doi":"10.1145/3203217.3203270","DOIUrl":null,"url":null,"abstract":"A graph application written using a distributed graph processing framework can perform over an order of magnitude slower than its high-performance, native counterpart. This issue stems from the aim, common to most graph frameworks, of restricting the scope of application development to specific graph constructs, such as, for example, vertex or edge programs. In this paper we present Horizon, a distributed graph processing framework achieving close to native performance without penalizing productivity by providing a multi-layer, multi-abstraction model of computation. Compared to current frameworks, Horizon extends the scope of computation by exposing two notions usually relegated to implementations: graph data models and communication models. Horizon can reduce execution time by an average of 5.3× across different applications and datasets and process an order of magnitude larger graphs when compared to the state of the art.","PeriodicalId":127096,"journal":{"name":"Proceedings of the 15th ACM International Conference on Computing Frontiers","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3203217.3203270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A graph application written using a distributed graph processing framework can perform over an order of magnitude slower than its high-performance, native counterpart. This issue stems from the aim, common to most graph frameworks, of restricting the scope of application development to specific graph constructs, such as, for example, vertex or edge programs. In this paper we present Horizon, a distributed graph processing framework achieving close to native performance without penalizing productivity by providing a multi-layer, multi-abstraction model of computation. Compared to current frameworks, Horizon extends the scope of computation by exposing two notions usually relegated to implementations: graph data models and communication models. Horizon can reduce execution time by an average of 5.3× across different applications and datasets and process an order of magnitude larger graphs when compared to the state of the art.
Horizon:用于图分析的多抽象框架
使用分布式图形处理框架编写的图形应用程序的执行速度可能比其高性能的本机对应程序慢一个数量级。这个问题源于大多数图框架的共同目标,即将应用程序开发的范围限制在特定的图结构上,例如,顶点或边缘程序。在本文中,我们提出了Horizon,这是一个分布式图形处理框架,通过提供多层、多抽象的计算模型,在不影响生产力的情况下实现接近原生性能。与当前的框架相比,Horizon扩展了计算的范围,暴露了两个通常属于实现的概念:图数据模型和通信模型。Horizon可以在不同的应用程序和数据集之间平均减少5.3倍的执行时间,并且与目前的技术水平相比,可以处理数量级更大的图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信