Using functional PCA for cardiac motion exploration

D. Clot
{"title":"Using functional PCA for cardiac motion exploration","authors":"D. Clot","doi":"10.1109/ICDM.2002.1183890","DOIUrl":null,"url":null,"abstract":"Principal component analysis (PCA) is a major tool in multivariate data analysis. Its paradigms are also used in Karhunen-Loeve decomposition, a standard tool in image processing. Extensions of PCA to the framework of functional data have been proposed. The analysis provided by functional PCA seems to be a powerful tool for finding principal sources of variability in curves or images, but fails to provide easy interpretations in the case of multifunctional data. Guidelines aiming at spot information from the outputs of PCA applied to functionals with values in the space of continuous functions upon a bounded domain are proposed. An application to cardiac motion analysis illustrates the complexity of the multifunctional framework and the results provided by functional PCA.","PeriodicalId":405340,"journal":{"name":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 IEEE International Conference on Data Mining, 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2002.1183890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Principal component analysis (PCA) is a major tool in multivariate data analysis. Its paradigms are also used in Karhunen-Loeve decomposition, a standard tool in image processing. Extensions of PCA to the framework of functional data have been proposed. The analysis provided by functional PCA seems to be a powerful tool for finding principal sources of variability in curves or images, but fails to provide easy interpretations in the case of multifunctional data. Guidelines aiming at spot information from the outputs of PCA applied to functionals with values in the space of continuous functions upon a bounded domain are proposed. An application to cardiac motion analysis illustrates the complexity of the multifunctional framework and the results provided by functional PCA.
应用功能性PCA进行心脏运动探查
主成分分析(PCA)是多变量数据分析的主要工具。它的范例也被用于Karhunen-Loeve分解,一个标准的图像处理工具。提出了将主成分分析扩展到功能数据框架的方法。功能PCA提供的分析似乎是寻找曲线或图像中可变性的主要来源的强大工具,但在多功能数据的情况下无法提供简单的解释。针对从PCA输出的点信息应用于有界域上具有连续函数空间值的泛函,提出了准则。一个应用于心脏运动分析说明了多功能框架的复杂性和功能PCA提供的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信