Two-level CFAR Algorithm for Target Detection in MmWave Radar

Chu Xu, Fenggui Wang, Yanbo Zhang, Li Xu, M. Ai, Guang Yan
{"title":"Two-level CFAR Algorithm for Target Detection in MmWave Radar","authors":"Chu Xu, Fenggui Wang, Yanbo Zhang, Li Xu, M. Ai, Guang Yan","doi":"10.1109/ICCEA53728.2021.00055","DOIUrl":null,"url":null,"abstract":"In the classical Constant False Alarm Rate (CFAR) algorithms, each cell participates in the calculation of the background power many times, which leads to low computational efficiency. This paper proposes a two-level CFAR detection algorithm–Order Statistic Convolution-based Cell Averaging CFAR (OSCCA-CFAR) for target detection. The first level CFAR uses the order statistic CFAR (OS-CFAR) algorithm to pre-detect the targets in the distance-dimension of the Range-Doppler Matrix (RDM); Based on the equivalence relationship between convolution and sliding window structure, the second level CFAR detects targets in Doppler-dimension by using convolution-based cell averaging CFAR (CCA-CFAR). Experimental results in mmwave radar imaging show that the proposed algorithm can effectively improve the efficiency of target detection without affecting the detection results.","PeriodicalId":325790,"journal":{"name":"2021 International Conference on Computer Engineering and Application (ICCEA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computer Engineering and Application (ICCEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEA53728.2021.00055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the classical Constant False Alarm Rate (CFAR) algorithms, each cell participates in the calculation of the background power many times, which leads to low computational efficiency. This paper proposes a two-level CFAR detection algorithm–Order Statistic Convolution-based Cell Averaging CFAR (OSCCA-CFAR) for target detection. The first level CFAR uses the order statistic CFAR (OS-CFAR) algorithm to pre-detect the targets in the distance-dimension of the Range-Doppler Matrix (RDM); Based on the equivalence relationship between convolution and sliding window structure, the second level CFAR detects targets in Doppler-dimension by using convolution-based cell averaging CFAR (CCA-CFAR). Experimental results in mmwave radar imaging show that the proposed algorithm can effectively improve the efficiency of target detection without affecting the detection results.
毫米波雷达目标检测的两级CFAR算法
在经典的恒虚警率(Constant False Alarm Rate, CFAR)算法中,每个单元多次参与背景功率的计算,导致计算效率较低。本文提出了一种用于目标检测的两级CFAR检测算法——基于阶统计卷积的细胞平均CFAR (OSCCA-CFAR)。第一级CFAR采用阶数统计CFAR (OS-CFAR)算法在距离-多普勒矩阵(RDM)的距离维上对目标进行预检测;基于卷积与滑动窗结构的等价关系,采用基于卷积的单元平均CFAR (CCA-CFAR)对多普勒维目标进行检测。毫米波雷达成像实验结果表明,该算法在不影响目标检测结果的前提下,有效提高了目标检测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信