Risk Accessment of Machine Learning Algorithms on Manipulated Dataset in Power Systems

Sayawu Yakubu Diaba, M. Shafie‐khah, M. Mekkanen, Tero Vartiainen, M. Elmusrati
{"title":"Risk Accessment of Machine Learning Algorithms on Manipulated Dataset in Power Systems","authors":"Sayawu Yakubu Diaba, M. Shafie‐khah, M. Mekkanen, Tero Vartiainen, M. Elmusrati","doi":"10.1109/FES57669.2023.10182751","DOIUrl":null,"url":null,"abstract":"The emergence of the communication infrastructure in power systems has increased the variety and sophistication of network assaults. Intrusion Detection Systems’ (IDS) importance has increased in relation to network security. IDS, however, is no longer secure when confronted with adversarial examples, and attackers can boost assault success rates by tricking the IDS. As a result, resilience must be increased. This paper assesses the Decision Tree, Logistic regression, Support Vector Machines (SVM), Naïve Bayes, K-Nearest Neighbours (KNN), and Ensemble’s effectiveness. Using the WUSTL-IIoT-2021 dataset and CIC-IDS2017 dataset, we train the algorithms on the unmanipulated dataset and then train the algorithms on the manipulated dataset. Per the simulation results, the accuracy and prediction speed drop on the manipulated dataset while the training time rises.","PeriodicalId":165790,"journal":{"name":"2023 International Conference on Future Energy Solutions (FES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Future Energy Solutions (FES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FES57669.2023.10182751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of the communication infrastructure in power systems has increased the variety and sophistication of network assaults. Intrusion Detection Systems’ (IDS) importance has increased in relation to network security. IDS, however, is no longer secure when confronted with adversarial examples, and attackers can boost assault success rates by tricking the IDS. As a result, resilience must be increased. This paper assesses the Decision Tree, Logistic regression, Support Vector Machines (SVM), Naïve Bayes, K-Nearest Neighbours (KNN), and Ensemble’s effectiveness. Using the WUSTL-IIoT-2021 dataset and CIC-IDS2017 dataset, we train the algorithms on the unmanipulated dataset and then train the algorithms on the manipulated dataset. Per the simulation results, the accuracy and prediction speed drop on the manipulated dataset while the training time rises.
电力系统操纵数据集上机器学习算法的风险评估
电力系统中通信基础设施的出现增加了网络攻击的多样性和复杂性。入侵检测系统(IDS)对于网络安全的重要性与日俱增。然而,当面对对抗性示例时,IDS不再安全,攻击者可以通过欺骗IDS来提高攻击成功率。因此,韧性必须增强。本文评估了决策树、逻辑回归、支持向量机(SVM)、Naïve贝叶斯、k近邻(KNN)和Ensemble的有效性。使用WUSTL-IIoT-2021数据集和CIC-IDS2017数据集,我们在未操作数据集上训练算法,然后在操作数据集上训练算法。仿真结果表明,随着训练时间的增加,被操纵数据集的预测精度和速度下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信