Automatic Title Generation for Spoken Broadcast News

Rong Jin, Alexander Hauptmann
{"title":"Automatic Title Generation for Spoken Broadcast News","authors":"Rong Jin, Alexander Hauptmann","doi":"10.3115/1072133.1072144","DOIUrl":null,"url":null,"abstract":"In this paper, we implemented a set of title generation methods using training set of 21190 news stories and evaluated them on an independent test corpus of 1006 broadcast news documents, comparing the results over manual transcription to the results over automatically recognized speech. We use both F1 and the average number of correct title words in the correct order as metric. Overall, the results show that title generation for speech recognized news documents is possible at a level approaching the accuracy of titles generated for perfect text transcriptions.","PeriodicalId":108911,"journal":{"name":"Proceedings of the first international conference on Human language technology research - HLT '01","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the first international conference on Human language technology research - HLT '01","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/1072133.1072144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

Abstract

In this paper, we implemented a set of title generation methods using training set of 21190 news stories and evaluated them on an independent test corpus of 1006 broadcast news documents, comparing the results over manual transcription to the results over automatically recognized speech. We use both F1 and the average number of correct title words in the correct order as metric. Overall, the results show that title generation for speech recognized news documents is possible at a level approaching the accuracy of titles generated for perfect text transcriptions.
广播新闻口语标题自动生成
在本文中,我们使用包含21190个新闻故事的训练集实现了一组标题生成方法,并在包含1006个广播新闻文档的独立测试语料库上对它们进行了评估,将人工转录的结果与自动识别语音的结果进行了比较。我们使用F1和正确顺序的正确标题词的平均数量作为度量。总的来说,结果表明,为语音识别的新闻文档生成标题是可能的,其准确度接近为完美的文本转录生成标题的准确度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信