6D Object Pose Estimation by Visual Descriptor

Qi-Wei Sun, Samuel Cheng
{"title":"6D Object Pose Estimation by Visual Descriptor","authors":"Qi-Wei Sun, Samuel Cheng","doi":"10.1145/3438872.3439095","DOIUrl":null,"url":null,"abstract":"One essential component for object pose estimation is to extract the objects' features with suitable representation. For symmetrical objects and smooth objects that lack texture, the pose estimation results are not satisfactory because it is difficult to extract and represent these objects' feature information. This work introduces a new method to represent objects' features by constructing pixel-level visual descriptors and performing a 6D pose estimation based on the RGB-D image. Compared with traditional RGB images, RGB-D images can provide richer information, and image descriptors constructed based on RGB-D images can extract and represent object features more effectively. We also use a network to refine the pose estimation result instead of using ICP to improve refinement speed. The proposed architecture has made satisfactory improvement on the YCB-Video dataset, especially for symmetric objects and other categories that are difficult to regress in the past.","PeriodicalId":199307,"journal":{"name":"Proceedings of the 2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd International Conference on Robotics, Intelligent Control and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3438872.3439095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One essential component for object pose estimation is to extract the objects' features with suitable representation. For symmetrical objects and smooth objects that lack texture, the pose estimation results are not satisfactory because it is difficult to extract and represent these objects' feature information. This work introduces a new method to represent objects' features by constructing pixel-level visual descriptors and performing a 6D pose estimation based on the RGB-D image. Compared with traditional RGB images, RGB-D images can provide richer information, and image descriptors constructed based on RGB-D images can extract and represent object features more effectively. We also use a network to refine the pose estimation result instead of using ICP to improve refinement speed. The proposed architecture has made satisfactory improvement on the YCB-Video dataset, especially for symmetric objects and other categories that are difficult to regress in the past.
基于视觉描述符的6D目标姿态估计
目标姿态估计的一个重要组成部分是提取具有合适表示形式的目标特征。对于对称物体和缺乏纹理的光滑物体,由于难以提取和表示这些物体的特征信息,姿态估计结果并不令人满意。本文介绍了一种新的方法,通过构建像素级视觉描述符并基于RGB-D图像进行6D姿态估计来表示物体的特征。与传统的RGB图像相比,RGB- d图像可以提供更丰富的信息,基于RGB- d图像构建的图像描述符可以更有效地提取和表示目标特征。我们还使用网络来改进姿态估计结果,而不是使用ICP来提高改进速度。所提出的体系结构在YCB-Video数据集上取得了令人满意的改进,特别是对于对称对象和其他过去难以回归的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信