Position probability grids for mobile robots obtained by convolution

F. Hackbarth
{"title":"Position probability grids for mobile robots obtained by convolution","authors":"F. Hackbarth","doi":"10.1109/ICARA.2000.4803997","DOIUrl":null,"url":null,"abstract":"The paper presents an approach to use relative sensor information for position estimation in an absolute position probability grid. Here relatively measuring sensors are the odometry and nine narrow beam infrared sensors with nonlinear characteristics mounted on a mobile robot. An inaccurate indoor GPS sensor is available for absolute position data. However, for the best position estimate all these sensors have to be considered. The data fusion can only be done with comparable data. Therefore, the relative sensor information is transformed into absolute position information by convolution and represented as individual position probability grids. To determine the resulting position of one robot these grids are combined according to Bayes Theorem.","PeriodicalId":435769,"journal":{"name":"2009 4th International Conference on Autonomous Robots and Agents","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 4th International Conference on Autonomous Robots and Agents","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA.2000.4803997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The paper presents an approach to use relative sensor information for position estimation in an absolute position probability grid. Here relatively measuring sensors are the odometry and nine narrow beam infrared sensors with nonlinear characteristics mounted on a mobile robot. An inaccurate indoor GPS sensor is available for absolute position data. However, for the best position estimate all these sensors have to be considered. The data fusion can only be done with comparable data. Therefore, the relative sensor information is transformed into absolute position information by convolution and represented as individual position probability grids. To determine the resulting position of one robot these grids are combined according to Bayes Theorem.
通过卷积得到移动机器人的位置概率网格
提出了一种利用相对传感器信息在绝对位置概率网格中进行位置估计的方法。这里相对测量的传感器是安装在移动机器人上的里程计传感器和九个具有非线性特性的窄光束红外传感器。一个不准确的室内GPS传感器可用于绝对位置数据。然而,为了获得最佳位置估计,必须考虑所有这些传感器。数据融合只能用可比数据完成。因此,通过卷积将相对传感器信息转换为绝对位置信息,并表示为单个位置概率网格。为了确定一个机器人的最终位置,根据贝叶斯定理将这些网格组合在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信