Biometric authentication from low resolution hand images using radon transform

A. Mostayed, M. E. Kabir, S. Z. Khan, Md. Mynuddin Gani Mazumder
{"title":"Biometric authentication from low resolution hand images using radon transform","authors":"A. Mostayed, M. E. Kabir, S. Z. Khan, Md. Mynuddin Gani Mazumder","doi":"10.1109/ICCIT.2009.5407305","DOIUrl":null,"url":null,"abstract":"Biometric authentication refers to the automatic verification of a person's identity from physiological or behavioral characteristics presented by him or her. In this paper an authentication scheme from hand images is presented. Instead of dealing with hand measurements, typically termed as ‘hand geometry’, this method verifies with entire hand shape. Peg free and position invariant features are calculated using Radon Transform. Low resolution hand images captured by a document scanner are processed to extract feature vectors. The proposed scheme is tested on a data set of 136 images with simple Euclidian norm based match score. The method attained an Equal Error Rate (EER) of 5.1%.","PeriodicalId":443258,"journal":{"name":"2009 12th International Conference on Computers and Information Technology","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 12th International Conference on Computers and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT.2009.5407305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

Abstract

Biometric authentication refers to the automatic verification of a person's identity from physiological or behavioral characteristics presented by him or her. In this paper an authentication scheme from hand images is presented. Instead of dealing with hand measurements, typically termed as ‘hand geometry’, this method verifies with entire hand shape. Peg free and position invariant features are calculated using Radon Transform. Low resolution hand images captured by a document scanner are processed to extract feature vectors. The proposed scheme is tested on a data set of 136 images with simple Euclidian norm based match score. The method attained an Equal Error Rate (EER) of 5.1%.
基于氡变换的低分辨率手部图像生物特征认证
生物特征认证是指根据一个人的生理或行为特征对其身份进行自动验证。本文提出了一种基于手图像的身份验证方案。而不是处理手的测量,通常称为“手几何”,这种方法验证整个手的形状。利用Radon变换计算无栓特征和位置不变特征。对文档扫描仪捕获的低分辨率手图像进行处理,提取特征向量。在基于简单欧几里得范数的匹配分数的数据集上对该方案进行了测试。该方法的平均错误率(EER)为5.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信