Novel Algorithm for Incremental L1-Norm Principal-Component Analysis

M. Dhanaraj, Panos P. Markopoulos
{"title":"Novel Algorithm for Incremental L1-Norm Principal-Component Analysis","authors":"M. Dhanaraj, Panos P. Markopoulos","doi":"10.23919/EUSIPCO.2018.8553239","DOIUrl":null,"url":null,"abstract":"L1-norm Principal-Component Analysis (L1-PCA) has been shown to exhibit sturdy resistance against outliers among the processed data. In this work, we propose L1-IPCA: an algorithm for incremental L1-PCA, appropriate for big-data and streaming-data applications. The proposed algorithm updates the calculated L1-norm principal components as new data points arrive, conducting a sequence of computationally efficient bit-flipping iterations. Our experimental studies on subspace estimation, image conditioning, and video foreground extraction illustrate that the proposed algorithm attains remarkable outlier resistance at low computational cost.","PeriodicalId":303069,"journal":{"name":"2018 26th European Signal Processing Conference (EUSIPCO)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 26th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2018.8553239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

L1-norm Principal-Component Analysis (L1-PCA) has been shown to exhibit sturdy resistance against outliers among the processed data. In this work, we propose L1-IPCA: an algorithm for incremental L1-PCA, appropriate for big-data and streaming-data applications. The proposed algorithm updates the calculated L1-norm principal components as new data points arrive, conducting a sequence of computationally efficient bit-flipping iterations. Our experimental studies on subspace estimation, image conditioning, and video foreground extraction illustrate that the proposed algorithm attains remarkable outlier resistance at low computational cost.
增量l1 -范数主成分分析的新算法
l1 -范数主成分分析(L1-PCA)已被证明对处理数据中的异常值具有强大的抵抗力。在这项工作中,我们提出了L1-IPCA:一种适用于大数据和流数据应用的增量L1-PCA算法。该算法在新数据点到达时更新计算的l1范数主成分,进行一系列计算效率高的位翻转迭代。我们在子空间估计、图像调理和视频前景提取方面的实验研究表明,该算法以较低的计算成本获得了显著的离群值阻力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信