Junyoung Park, A. Gupta, WooSeob Kim, Jong-Wook Lim, S. Yeo, Dongkeun Kim, Chang-Won Jeong, K. Yoon, Seungryong Cho, J. Ahn, M. Mativenga, J. Ryu
{"title":"Stationary multi X-ray source system with carbon nanotube emitters for digital tomosynthesis","authors":"Junyoung Park, A. Gupta, WooSeob Kim, Jong-Wook Lim, S. Yeo, Dongkeun Kim, Chang-Won Jeong, K. Yoon, Seungryong Cho, J. Ahn, M. Mativenga, J. Ryu","doi":"10.1117/12.2582280","DOIUrl":null,"url":null,"abstract":"In order to diagnose diseases in complex areas such as the chest, an X-ray system of a suitable type is required. Chest tomosynthesis, which acquires a reconstructed 3D image by taking X-ray images from various angles, is one of the best image acquisition technologies in use. However, one major disadvantage of tomosynthesis systems with a single X-ray source is the motion blur which occurs when the source moves or rotates to change the acquisition angle. To overcome this, we report a stationary digital tomosynthesis system, which uses 85 field-emission type X-ray sources based on carbon nanotubes (CNTs). By using CNT-based electronic emitters, it is possible to miniaturize and digitize the X-ray system. This system is designed such that a maximum of 120 kV can be applied to the anode to obtain chest X-ray images. The field emission characteristics of the CNT-based emitters are measured, and X-ray images were obtained using the stationary multi X-ray source system, confirming its applicability to chest Tomosynthesis.","PeriodicalId":199502,"journal":{"name":"Medical Imaging 2021: Physics of Medical Imaging","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Imaging 2021: Physics of Medical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2582280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In order to diagnose diseases in complex areas such as the chest, an X-ray system of a suitable type is required. Chest tomosynthesis, which acquires a reconstructed 3D image by taking X-ray images from various angles, is one of the best image acquisition technologies in use. However, one major disadvantage of tomosynthesis systems with a single X-ray source is the motion blur which occurs when the source moves or rotates to change the acquisition angle. To overcome this, we report a stationary digital tomosynthesis system, which uses 85 field-emission type X-ray sources based on carbon nanotubes (CNTs). By using CNT-based electronic emitters, it is possible to miniaturize and digitize the X-ray system. This system is designed such that a maximum of 120 kV can be applied to the anode to obtain chest X-ray images. The field emission characteristics of the CNT-based emitters are measured, and X-ray images were obtained using the stationary multi X-ray source system, confirming its applicability to chest Tomosynthesis.