Structured covariance estimation and radar imaging with sparse linear models

D. Fuhrmann
{"title":"Structured covariance estimation and radar imaging with sparse linear models","authors":"D. Fuhrmann","doi":"10.1109/CAMAP.2005.1574170","DOIUrl":null,"url":null,"abstract":"The problem of the computational complexity of the structure covariance EM algorithm is considered. Ordinarily this algorithm requires O(N/sup 3/) floating point operations, per iteration, for the estimation of an N-point power spectrum. However, if the linear model relating the observations to the underlying variables is sparse, the computational burden can be reduced to O(N) operations. This sparsity can be achieved approximately by a data preprocessing step that causes the effect of each underlying variable to be seen in only one component of the preprocessed observation vectors. An illustrative example involving a rotating linear array as the sensor and a Chebyshev filter bank as the preprocessor is given.","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of the computational complexity of the structure covariance EM algorithm is considered. Ordinarily this algorithm requires O(N/sup 3/) floating point operations, per iteration, for the estimation of an N-point power spectrum. However, if the linear model relating the observations to the underlying variables is sparse, the computational burden can be reduced to O(N) operations. This sparsity can be achieved approximately by a data preprocessing step that causes the effect of each underlying variable to be seen in only one component of the preprocessed observation vectors. An illustrative example involving a rotating linear array as the sensor and a Chebyshev filter bank as the preprocessor is given.
使用稀疏线性模型进行结构化协方差估计和雷达成像
考虑了结构协方差EM算法的计算复杂度问题。通常,该算法每次迭代需要O(N/sup 3/)个浮点运算来估计N点功率谱。然而,如果将观测值与底层变量相关的线性模型是稀疏的,则计算负担可以减少到O(N)个操作。这种稀疏性可以通过数据预处理步骤近似地实现,该步骤使每个底层变量的影响仅在预处理的观测向量的一个分量中可见。给出了一个以旋转线性阵列作为传感器,切比雪夫滤波器组作为预处理器的示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信