Extracting Specific Voice from Mixed Audio Source

Kunihiko Sato
{"title":"Extracting Specific Voice from Mixed Audio Source","authors":"Kunihiko Sato","doi":"10.1109/AIVR46125.2019.00039","DOIUrl":null,"url":null,"abstract":"We propose auditory diminished reality by a deep neural network (DNN) extracting a single speech signal from a mixture of sounds containing other speakers and background noise. To realize the proposed DNN, we introduce a new dataset comprised of multi-speakers and environment noises. We conduct evaluations for measuring the source separation quality of the DNN. Additionally, we compare the separation quality of models learned with different amounts of training data. As a result, we found there is no significant difference in the separation quality between 10 and 30 minutes of the target speaker's speech length for training data.","PeriodicalId":274566,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"133 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR46125.2019.00039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose auditory diminished reality by a deep neural network (DNN) extracting a single speech signal from a mixture of sounds containing other speakers and background noise. To realize the proposed DNN, we introduce a new dataset comprised of multi-speakers and environment noises. We conduct evaluations for measuring the source separation quality of the DNN. Additionally, we compare the separation quality of models learned with different amounts of training data. As a result, we found there is no significant difference in the separation quality between 10 and 30 minutes of the target speaker's speech length for training data.
从混合音频源中提取特定的声音
我们提出通过深度神经网络(DNN)从包含其他说话者和背景噪声的混合声音中提取单个语音信号来减少听觉现实。为了实现所提出的深度神经网络,我们引入了一个由多说话者和环境噪声组成的新数据集。我们对DNN的源分离质量进行了评估。此外,我们比较了不同数量的训练数据学习模型的分离质量。因此,我们发现10分钟和30分钟的目标说话人的语音长度对于训练数据的分离质量没有显著差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信