Multi-View Ambient Occlusion for Enhancing Visualization of Raw Scanning Data

Manuele Sabbadin, Gianpaolo Palma, Paolo Cignoni, Roberto Scopigno
{"title":"Multi-View Ambient Occlusion for Enhancing Visualization of Raw Scanning Data","authors":"Manuele Sabbadin, Gianpaolo Palma, Paolo Cignoni, Roberto Scopigno","doi":"10.2312/gch.20161379","DOIUrl":null,"url":null,"abstract":"The correct understanding of the 3D shape is a crucial aspect to improve the 3D scanning process, especially in order to perform high quality and as complete as possible 3D acquisitions on the field. The paper proposes a new technique to enhance the visualization of raw scanning data based on the definition in device space of a Multi-View Ambient Occlusion (MVAO). The approach allows improving the comprehension of the 3D shape of the input geometry and, requiring almost no preprocessing, it can be directly applied to raw captured point clouds. The algorithm has been tested on different datasets: high resolution Time-of-Flight scans and streams of low quality range maps from a depth camera. The results enhance the details perception in the 3D geometry using the multi-view information to make more robust the ambient occlusion estimation.","PeriodicalId":203827,"journal":{"name":"Eurographics Workshop on Graphics and Cultural Heritage","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Graphics and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/gch.20161379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The correct understanding of the 3D shape is a crucial aspect to improve the 3D scanning process, especially in order to perform high quality and as complete as possible 3D acquisitions on the field. The paper proposes a new technique to enhance the visualization of raw scanning data based on the definition in device space of a Multi-View Ambient Occlusion (MVAO). The approach allows improving the comprehension of the 3D shape of the input geometry and, requiring almost no preprocessing, it can be directly applied to raw captured point clouds. The algorithm has been tested on different datasets: high resolution Time-of-Flight scans and streams of low quality range maps from a depth camera. The results enhance the details perception in the 3D geometry using the multi-view information to make more robust the ambient occlusion estimation.
增强原始扫描数据可视化的多视图环境遮挡
对三维形状的正确理解是改进三维扫描过程的关键方面,特别是为了在现场执行高质量和尽可能完整的三维采集。本文提出了一种基于多视点环境遮挡(MVAO)设备空间定义的增强原始扫描数据可视化的新技术。该方法可以提高对输入几何形状的3D形状的理解,并且几乎不需要预处理,它可以直接应用于原始捕获的点云。该算法已经在不同的数据集上进行了测试:高分辨率的飞行时间扫描和来自深度相机的低质量范围地图流。结果表明,利用多视图信息增强了三维几何体的细节感知,使环境遮挡估计更加鲁棒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信