Opinion Expression Detection via Deep Bidirectional C-GRUs

Xiaoxia Xie
{"title":"Opinion Expression Detection via Deep Bidirectional C-GRUs","authors":"Xiaoxia Xie","doi":"10.1109/DEXA.2017.40","DOIUrl":null,"url":null,"abstract":"The ability to accurately detect opinion expression in a document is an essential and fundamental task in opinion mining. In this work, we consider opinion expression detection as a sequence labeling task. We describe deep neural network frameworks that consist of convolutional neural networks (CNNs) and bidirectional gated units (Bi-GRUs). CNNs are capable of capturing local features in a sequence, while Bi-GRUs, a type of recurrent neural network (RNN) variant, are able to extract features from sequence data. The properties of these two networks provide the framework to effectively detect opinion expression. Experimental results show that our methods significantly outperform traditional methods like conditional random field (CRF) and previous state-of-the-art deep RNN methods.","PeriodicalId":127009,"journal":{"name":"2017 28th International Workshop on Database and Expert Systems Applications (DEXA)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 28th International Workshop on Database and Expert Systems Applications (DEXA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2017.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The ability to accurately detect opinion expression in a document is an essential and fundamental task in opinion mining. In this work, we consider opinion expression detection as a sequence labeling task. We describe deep neural network frameworks that consist of convolutional neural networks (CNNs) and bidirectional gated units (Bi-GRUs). CNNs are capable of capturing local features in a sequence, while Bi-GRUs, a type of recurrent neural network (RNN) variant, are able to extract features from sequence data. The properties of these two networks provide the framework to effectively detect opinion expression. Experimental results show that our methods significantly outperform traditional methods like conditional random field (CRF) and previous state-of-the-art deep RNN methods.
基于深度双向c - gru的意见表达检测
在意见挖掘中,准确地检测意见表达是一项必不可少的基础任务。在这项工作中,我们将意见表达检测视为一个序列标记任务。我们描述了由卷积神经网络(cnn)和双向门控单元(bi - gru)组成的深度神经网络框架。cnn能够捕获序列中的局部特征,而bi - gru,一种递归神经网络(RNN)变体,能够从序列数据中提取特征。这两种网络的特性为有效检测意见表达提供了框架。实验结果表明,我们的方法明显优于传统的方法,如条件随机场(CRF)和以前最先进的深度RNN方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信