Attention-based LSTM-CNNs For Time-series Classification

Qianjin Du, Weixi Gu, Lin Zhang, Shao-Lun Huang
{"title":"Attention-based LSTM-CNNs For Time-series Classification","authors":"Qianjin Du, Weixi Gu, Lin Zhang, Shao-Lun Huang","doi":"10.1145/3274783.3275208","DOIUrl":null,"url":null,"abstract":"Time series classification is a critical problem in the machine learning field, which spawns numerous research works on it. In this work, we propose AttLSTM-CNNs, an attention-based LSTM network and convolution network that jointly extracts the underlying pattern among the time-series for the classification. The attention-based LSTM automatically captures the long-term temporal dependency among the series, and the CNN describes the spatial sparsity and heterogeneity in the data. The extensive experiments show that the proposed model outperforms the other methods for time-series classification.","PeriodicalId":156307,"journal":{"name":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3274783.3275208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Time series classification is a critical problem in the machine learning field, which spawns numerous research works on it. In this work, we propose AttLSTM-CNNs, an attention-based LSTM network and convolution network that jointly extracts the underlying pattern among the time-series for the classification. The attention-based LSTM automatically captures the long-term temporal dependency among the series, and the CNN describes the spatial sparsity and heterogeneity in the data. The extensive experiments show that the proposed model outperforms the other methods for time-series classification.
基于注意力的lstm - cnn时间序列分类
时间序列分类是机器学习领域的一个关键问题,产生了大量的研究工作。在这项工作中,我们提出了attlstm - cnn,这是一种基于注意力的LSTM网络和卷积网络,它们共同提取时间序列中的潜在模式进行分类。基于注意力的LSTM自动捕获序列之间的长期时间依赖性,CNN描述数据的空间稀疏性和异质性。大量的实验表明,该模型优于其他时间序列分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信