Infinitesimally small deformation which preserves geodesic lines

T. Podousova, A. Ugol'nikov, V. Dumanska
{"title":"Infinitesimally small deformation which preserves geodesic lines","authors":"T. Podousova, A. Ugol'nikov, V. Dumanska","doi":"10.1063/5.0033749","DOIUrl":null,"url":null,"abstract":"This paper proves that regular right circular cylinder permits non-trivial infinitesimally small deformation, which preserves geodesic lines and any pieces of the given surface with an equal area. The above mentioned surface is uniquely defined by preliminary chosen non-zero function of a single variable and two meaningful constants. Under these conditions tensor fields are found in explicit way. Every deformation can be interpreted as momentless stressed state of cylindrical shell with a certain surface stress.","PeriodicalId":156284,"journal":{"name":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 12th International On-line Conference for Promoting the Application of Mathematics in Technical and Natural Sciences - AMiTaNS’20","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0033749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proves that regular right circular cylinder permits non-trivial infinitesimally small deformation, which preserves geodesic lines and any pieces of the given surface with an equal area. The above mentioned surface is uniquely defined by preliminary chosen non-zero function of a single variable and two meaningful constants. Under these conditions tensor fields are found in explicit way. Every deformation can be interpreted as momentless stressed state of cylindrical shell with a certain surface stress.
保持测地线的无限小变形
本文证明了正圆柱体允许非平凡的无穷小变形,它保留了给定曲面上的测地线和任意块的等面积。上述曲面由初步选定的单变量和两个有意义常数的非零函数唯一定义。在这些条件下,用显式的方法求出张量场。每次变形都可以解释为具有一定表面应力的圆柱壳的无矩受力状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信