VOGA: Variable Ordering Genetic Algorithm for Learning Bayesian Classifiers

E. B. D. Santos, Estevam Hruschka
{"title":"VOGA: Variable Ordering Genetic Algorithm for Learning Bayesian Classifiers","authors":"E. B. D. Santos, Estevam Hruschka","doi":"10.1109/HIS.2006.77","DOIUrl":null,"url":null,"abstract":"This work proposes a hybrid approach to help the process of learning a Bayesian Classifier (BC) from data. The proposed method named VOGA (and its variant VOGA+) uses a Genetic Algorithm to optimize the BC learning process by means of the identification of an adequate variables ordering. The main contribution of VOGA and VOGA+ is the use information about the class variable when defining the most suitable variable ordering. Trying to optimize the GA initial population, VOGA+ ranks the attributes based on the class variable. Experiments performed in a number of datasets revealed that both methods are promising and VOGA+ tends to be favored domains having higher number of variables.","PeriodicalId":150732,"journal":{"name":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 Sixth International Conference on Hybrid Intelligent Systems (HIS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2006.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work proposes a hybrid approach to help the process of learning a Bayesian Classifier (BC) from data. The proposed method named VOGA (and its variant VOGA+) uses a Genetic Algorithm to optimize the BC learning process by means of the identification of an adequate variables ordering. The main contribution of VOGA and VOGA+ is the use information about the class variable when defining the most suitable variable ordering. Trying to optimize the GA initial population, VOGA+ ranks the attributes based on the class variable. Experiments performed in a number of datasets revealed that both methods are promising and VOGA+ tends to be favored domains having higher number of variables.
这项工作提出了一种混合方法来帮助从数据中学习贝叶斯分类器(BC)的过程。提出的VOGA(及其变体VOGA+)方法采用遗传算法,通过确定适当的变量排序来优化BC学习过程。VOGA和VOGA+的主要贡献是在定义最合适的变量排序时提供有关类变量的使用信息。为了优化GA初始种群,VOGA+基于类变量对属性进行排序。在许多数据集上进行的实验表明,这两种方法都很有前途,VOGA+往往是具有更多变量的有利域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信