A New Application Benchmark for Data Stream Processing Architectures in an Enterprise Context: Doctoral Symposium

Guenter Hesse, Christoph Matthies, Benjamin Reissaus, M. Uflacker
{"title":"A New Application Benchmark for Data Stream Processing Architectures in an Enterprise Context: Doctoral Symposium","authors":"Guenter Hesse, Christoph Matthies, Benjamin Reissaus, M. Uflacker","doi":"10.1145/3093742.3093902","DOIUrl":null,"url":null,"abstract":"Against the backdrop of ever-growing data volumes and trends like the Internet of Things (IoT) or Industry 4.0, Data Stream Processing Systems (DSPSs) or data stream processing architectures in general receive a greater interest. Continuously analyzing streams of data allows immediate responses to environmental changes. A challenging task in that context is assessing and comparing data stream processing architectures in order to identify the most suitable one for certain settings. The present paper provides an overview about performance benchmarks that can be used for analyzing data stream processing applications. By describing shortcomings of these benchmarks, the need for a new application benchmark in this area, especially for a benchmark covering enterprise architectures, is highlighted. A key role in such an enterprise context is the combination of streaming data and business data, which is barely covered in current data stream processing benchmarks. Furthermore, first ideas towards the development of a solution, i.e., a new application benchmark that is able to fill the existing gap, are depicted.","PeriodicalId":325666,"journal":{"name":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3093742.3093902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Against the backdrop of ever-growing data volumes and trends like the Internet of Things (IoT) or Industry 4.0, Data Stream Processing Systems (DSPSs) or data stream processing architectures in general receive a greater interest. Continuously analyzing streams of data allows immediate responses to environmental changes. A challenging task in that context is assessing and comparing data stream processing architectures in order to identify the most suitable one for certain settings. The present paper provides an overview about performance benchmarks that can be used for analyzing data stream processing applications. By describing shortcomings of these benchmarks, the need for a new application benchmark in this area, especially for a benchmark covering enterprise architectures, is highlighted. A key role in such an enterprise context is the combination of streaming data and business data, which is barely covered in current data stream processing benchmarks. Furthermore, first ideas towards the development of a solution, i.e., a new application benchmark that is able to fill the existing gap, are depicted.
企业环境下数据流处理体系结构的新应用基准:博士研讨会
在数据量不断增长和物联网(IoT)或工业4.0等趋势的背景下,数据流处理系统(dsss)或数据流处理架构通常受到更大的关注。持续分析数据流可以对环境变化做出即时反应。在这种情况下,一项具有挑战性的任务是评估和比较数据流处理架构,以便确定最适合某些设置的架构。本文概述了可用于分析数据流处理应用程序的性能基准。通过描述这些基准的缺点,强调了在这一领域需要一个新的应用程序基准,特别是覆盖企业架构的基准。在这样的企业环境中,一个关键角色是流数据和业务数据的组合,这在当前的数据流处理基准测试中几乎没有涉及到。此外,还描述了开发解决方案的第一个想法,即能够填补现有空白的新应用程序基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信