Introducing LUIMA: an experiment in legal conceptual retrieval of vaccine injury decisions using a UIMA type system and tools

Matthias Grabmair, Kevin D. Ashley, Ran Chen, Preethi Sureshkumar, Chen Wang, Eric Nyberg, Vern R. Walker
{"title":"Introducing LUIMA: an experiment in legal conceptual retrieval of vaccine injury decisions using a UIMA type system and tools","authors":"Matthias Grabmair, Kevin D. Ashley, Ran Chen, Preethi Sureshkumar, Chen Wang, Eric Nyberg, Vern R. Walker","doi":"10.1145/2746090.2746096","DOIUrl":null,"url":null,"abstract":"This paper presents first results from a proof of feasibility experiment in conceptual legal document retrieval in a particular domain (involving vaccine injury compensation). The conceptual markup of documents is done automatically using LUIMA, a law-specific semantic extraction toolbox based on the UIMA framework. The system consists of modules for automatic sub-sentence level annotation, machine learning based sentence annotation, basic retrieval using Apache Lucene and a machine learning based reranking of retrieved documents. In a leave-one-out experiment on a limited corpus, the resulting rankings scored higher for most tested queries than baseline rankings created using a commercial full-text legal information system.","PeriodicalId":309125,"journal":{"name":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th International Conference on Artificial Intelligence and Law","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746090.2746096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 54

Abstract

This paper presents first results from a proof of feasibility experiment in conceptual legal document retrieval in a particular domain (involving vaccine injury compensation). The conceptual markup of documents is done automatically using LUIMA, a law-specific semantic extraction toolbox based on the UIMA framework. The system consists of modules for automatic sub-sentence level annotation, machine learning based sentence annotation, basic retrieval using Apache Lucene and a machine learning based reranking of retrieved documents. In a leave-one-out experiment on a limited corpus, the resulting rankings scored higher for most tested queries than baseline rankings created using a commercial full-text legal information system.
介绍LUIMA:使用UIMA类型的系统和工具进行疫苗伤害判决法律概念检索的实验
本文介绍了在特定领域(涉及疫苗伤害赔偿)概念法律文件检索的可行性证明实验的初步结果。文档的概念标记是使用LUIMA自动完成的,LUIMA是一个基于UIMA框架的特定于法律的语义提取工具箱。该系统由自动子句级标注、基于机器学习的句子标注、使用Apache Lucene的基本检索和基于机器学习的检索文档重新排序模块组成。在有限语料库上的“留一”实验中,大多数测试查询的结果排名得分高于使用商业全文法律信息系统创建的基线排名。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信