{"title":"A high-power multi-port 0.46THz radiation source in nano-scale silicon technology using fundamental-frequency oscillation beyond fMAX of transistors","authors":"Peyman Nazari, Z. Wang, P. Heydari","doi":"10.1145/3109453.3122843","DOIUrl":null,"url":null,"abstract":"A silicon-integrated vertical IMPATT (V-IMPATT) diode is introduced and its implementation in a silicon-germanium (SiGe) BiCMOS process is presented. The device exhibits active behavior and negative resistance at > 400GHz, far above the fMAX of transistors in that technology node. Furthermore, it provides much higher output power compared to transistor-based harmonic power generation thanks to operation in breakdown region with much larger allowable voltage swing compared to transistors. As a result, using this device, generation of high oscillation power is enabled in nano-scale silicon process. In addition, a four-port on-chip cavity-backed antenna structure, as a multi-port resonator,power-combiner, and antenna is vertically integrated with four V-IMPATT devices to build a silicon-integrated 0.46THz radiation source, demonstrating 10.5dBm total radiated power and 18.5dBm EIRP.","PeriodicalId":400141,"journal":{"name":"Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th ACM International Conference on Nanoscale Computing and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3109453.3122843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A silicon-integrated vertical IMPATT (V-IMPATT) diode is introduced and its implementation in a silicon-germanium (SiGe) BiCMOS process is presented. The device exhibits active behavior and negative resistance at > 400GHz, far above the fMAX of transistors in that technology node. Furthermore, it provides much higher output power compared to transistor-based harmonic power generation thanks to operation in breakdown region with much larger allowable voltage swing compared to transistors. As a result, using this device, generation of high oscillation power is enabled in nano-scale silicon process. In addition, a four-port on-chip cavity-backed antenna structure, as a multi-port resonator,power-combiner, and antenna is vertically integrated with four V-IMPATT devices to build a silicon-integrated 0.46THz radiation source, demonstrating 10.5dBm total radiated power and 18.5dBm EIRP.