Encodji

Wolfgang Fuhl, Efe Bozkir, Benedikt W. Hosp, Nora Castner, David Geisler, Thiago Santini, Enkelejda Kasneci
{"title":"Encodji","authors":"Wolfgang Fuhl, Efe Bozkir, Benedikt W. Hosp, Nora Castner, David Geisler, Thiago Santini, Enkelejda Kasneci","doi":"10.1145/3314111.3323074","DOIUrl":null,"url":null,"abstract":"To this day, a variety of information has been obtained from human eye movements, which holds an imense potential to understand and classify cognitive processes and states - e.g., through scanpath classification. In this work, we explore the task of scanpath classification through a combination of unsupervised feature learning and convolutional neural networks. As an amusement factor, we use an Emoji space representation as feature space. This representation is achieved by training generative adversarial networks (GANs) for unpaired scanpath-to-Emoji translation with a cyclic loss. The resulting Emojis are then used to train a convolutional neural network for stimulus prediciton, showing an accuracy improvement of more than five percentual points compared to the same network trained using solely the scanpath data. As a side effect, we also obtain novel unique Emojis representing each unique scanpath. Our goal is to demonstrate the applicability and potential of unsupervised feature learning to scanpath classification in a humorous and entertaining way.","PeriodicalId":161901,"journal":{"name":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3314111.3323074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

To this day, a variety of information has been obtained from human eye movements, which holds an imense potential to understand and classify cognitive processes and states - e.g., through scanpath classification. In this work, we explore the task of scanpath classification through a combination of unsupervised feature learning and convolutional neural networks. As an amusement factor, we use an Emoji space representation as feature space. This representation is achieved by training generative adversarial networks (GANs) for unpaired scanpath-to-Emoji translation with a cyclic loss. The resulting Emojis are then used to train a convolutional neural network for stimulus prediciton, showing an accuracy improvement of more than five percentual points compared to the same network trained using solely the scanpath data. As a side effect, we also obtain novel unique Emojis representing each unique scanpath. Our goal is to demonstrate the applicability and potential of unsupervised feature learning to scanpath classification in a humorous and entertaining way.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信