Extraction of feature subspaces for content-based retrieval using relevance feedback

Zhong-Ming Su, S. Li, HongJiang Zhang
{"title":"Extraction of feature subspaces for content-based retrieval using relevance feedback","authors":"Zhong-Ming Su, S. Li, HongJiang Zhang","doi":"10.1145/500141.500158","DOIUrl":null,"url":null,"abstract":"In the past few years, relevance feedback (RF) has been used as an effective solution for content-based image retrieval (CBIR). Although effective, the RF-CBIR framework does not address the issue of feature extraction for dimension reduction and noise reduction. In this paper, we propose a novel method for extracting features for the class of images represented by the positive images provided by subjective RF. Principal Component Analysis (PCA) is used to reduce both noise contained in the original image features and dimensionality of feature spaces. The method increases the retrieval speed and reduces the memory significantly without sacrificing the retrieval accuracy.","PeriodicalId":416848,"journal":{"name":"MULTIMEDIA '01","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"75","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MULTIMEDIA '01","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/500141.500158","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 75

Abstract

In the past few years, relevance feedback (RF) has been used as an effective solution for content-based image retrieval (CBIR). Although effective, the RF-CBIR framework does not address the issue of feature extraction for dimension reduction and noise reduction. In this paper, we propose a novel method for extracting features for the class of images represented by the positive images provided by subjective RF. Principal Component Analysis (PCA) is used to reduce both noise contained in the original image features and dimensionality of feature spaces. The method increases the retrieval speed and reduces the memory significantly without sacrificing the retrieval accuracy.
在过去的几年中,相关反馈(RF)作为一种有效的解决方案被用于基于内容的图像检索。虽然有效,RF-CBIR框架没有解决降维和降噪的特征提取问题。在本文中,我们提出了一种新的方法来提取由主观射频提供的正图像所代表的图像类别的特征。利用主成分分析(PCA)来降低原始图像特征中包含的噪声和特征空间的维数。该方法在不牺牲检索精度的前提下,显著提高了检索速度,减少了内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信