A particle-based approach for topology estimation of gene networks

C. Tasdemir, M. Bugallo, P. Djurić
{"title":"A particle-based approach for topology estimation of gene networks","authors":"C. Tasdemir, M. Bugallo, P. Djurić","doi":"10.1109/CAMSAP.2017.8313217","DOIUrl":null,"url":null,"abstract":"In this paper, an iterative particle-based method is proposed for topology estimation of gene networks. Using a particle filter for each gene expression, the connections among genes and the gene expressions are modeled by random measures. The probabilities of the possible topologies are computed using only estimates of gene expressions which allow for proposals of new topologies in an iterative manner. The resampling step of particle filtering eliminates the topologies with smaller weights and improves the results. The algorithm is compared with the Least Absolute Shrinkage and Selection Operator. The simulation results of the proposed method show better performance in capturing the interactions among genes.","PeriodicalId":315977,"journal":{"name":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMSAP.2017.8313217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, an iterative particle-based method is proposed for topology estimation of gene networks. Using a particle filter for each gene expression, the connections among genes and the gene expressions are modeled by random measures. The probabilities of the possible topologies are computed using only estimates of gene expressions which allow for proposals of new topologies in an iterative manner. The resampling step of particle filtering eliminates the topologies with smaller weights and improves the results. The algorithm is compared with the Least Absolute Shrinkage and Selection Operator. The simulation results of the proposed method show better performance in capturing the interactions among genes.
基于粒子的基因网络拓扑估计方法
本文提出了一种基于迭代粒子的基因网络拓扑估计方法。对每个基因表达使用粒子过滤器,通过随机测量来模拟基因和基因表达之间的联系。可能拓扑的概率仅使用基因表达的估计来计算,这允许以迭代的方式提出新的拓扑。粒子滤波的重采样步骤消除了权重较小的拓扑,改善了结果。将该算法与最小绝对收缩算子和选择算子进行了比较。仿真结果表明,该方法在捕获基因间相互作用方面具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信