{"title":"Zero Phase speech representation for robust formant tracking","authors":"D. González, EDUARDO LLEIDA SOLANO, J. Lara","doi":"10.5281/ZENODO.43808","DOIUrl":null,"url":null,"abstract":"In this paper we present a speech representation based on the Linear Predictive Coding of the Zero Phase version of the signal (ZP-LPC) and its robustness in presence of additive noise for robust formant estimation. Two representations are proposed for using in the frequency candidate proposition stage of the formant tracking algorithm: 1) the roots of ZP-LPC and 2) the peaks of its group delay function (GDF). Both of them are studied and evaluated in noisy environments with a synthetic dataset to demonstrate their robustness. Proposed representations are then used in a formant tracking experiment with a speech database. A beam search algorithm is used for selecting the best candidates as formant. Results show that our method outperforms related techniques in noisy test configurations and is a good fit for use in applications that have to work in noisy environments.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper we present a speech representation based on the Linear Predictive Coding of the Zero Phase version of the signal (ZP-LPC) and its robustness in presence of additive noise for robust formant estimation. Two representations are proposed for using in the frequency candidate proposition stage of the formant tracking algorithm: 1) the roots of ZP-LPC and 2) the peaks of its group delay function (GDF). Both of them are studied and evaluated in noisy environments with a synthetic dataset to demonstrate their robustness. Proposed representations are then used in a formant tracking experiment with a speech database. A beam search algorithm is used for selecting the best candidates as formant. Results show that our method outperforms related techniques in noisy test configurations and is a good fit for use in applications that have to work in noisy environments.