Exploring Deep Learning-based Branch Prediction for Computer Devices

Yeongeun Seo, Jaehyun Park, Jung Ho Ahn, Taesup Moon
{"title":"Exploring Deep Learning-based Branch Prediction for Computer Devices","authors":"Yeongeun Seo, Jaehyun Park, Jung Ho Ahn, Taesup Moon","doi":"10.1109/icce-asia46551.2019.8942202","DOIUrl":null,"url":null,"abstract":"Branch predictor is a critical component in CPUs because its prediction accuracy highly influences the performance of computer devices. This technology attempts to predict whether a branch instruction is ‘taken’ or ‘not taken’ and executes the following instructions in an execution order based on the prediction result. If the prediction is incorrect, those speculatively executed instructions must be rolled back, causing overheads on both performance and energy efficiency. Conventional branch predictors typically adopt rule-based methods exploiting branch history (i.e., whether recently encountered branches in the course of execution or on the same address of the current instruction were taken or not), whereas deep learning-based prediction methods have been recently proposed. In this paper, we show the neural network model learned with less dataset generalizes well for all applications, not just for specific applications in the training set. Also, unlike the previous deep learning-based branch prediction studies, which were difficult to reproduce, this paper includes clear experiment contents.","PeriodicalId":117814,"journal":{"name":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icce-asia46551.2019.8942202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Branch predictor is a critical component in CPUs because its prediction accuracy highly influences the performance of computer devices. This technology attempts to predict whether a branch instruction is ‘taken’ or ‘not taken’ and executes the following instructions in an execution order based on the prediction result. If the prediction is incorrect, those speculatively executed instructions must be rolled back, causing overheads on both performance and energy efficiency. Conventional branch predictors typically adopt rule-based methods exploiting branch history (i.e., whether recently encountered branches in the course of execution or on the same address of the current instruction were taken or not), whereas deep learning-based prediction methods have been recently proposed. In this paper, we show the neural network model learned with less dataset generalizes well for all applications, not just for specific applications in the training set. Also, unlike the previous deep learning-based branch prediction studies, which were difficult to reproduce, this paper includes clear experiment contents.
探索基于深度学习的计算机设备分支预测
分支预测器是cpu中的关键部件,它的预测精度直接影响到计算机设备的性能。该技术试图预测分支指令是否被“采用”或“未采用”,并根据预测结果按执行顺序执行以下指令。如果预测不正确,那些推测性执行的指令必须回滚,这会导致性能和能源效率的开销。传统的分支预测器通常采用基于规则的方法,利用分支历史(即,是否在执行过程中最近遇到分支,或者是否在当前指令的同一地址上采取分支),而基于深度学习的预测方法最近已经提出。在本文中,我们证明了使用较少数据集学习的神经网络模型可以很好地泛化所有应用,而不仅仅是训练集中的特定应用。此外,与以往基于深度学习的分支预测研究难以重现不同,本文包含了清晰的实验内容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信