Automatic Depression Recognition Using Multi-scale Facial Behavior Dynamics

Yajun Zhu
{"title":"Automatic Depression Recognition Using Multi-scale Facial Behavior Dynamics","authors":"Yajun Zhu","doi":"10.1109/icicse55337.2022.9828962","DOIUrl":null,"url":null,"abstract":"Depression is currently the most common mental health issue that has negative impacts on a large number of people’s life. Although many recent studies proposed to estimate depression severity from human behaviors, the majority of them failed to consider multi-scale behavioral dynamics, which can be crucial clues for depression recognition. In this paper, we propose a novel system that can encode multi-scale short-term and long-term behavioral dynamics for depression recognition. It first extends Dynamic Image Algorithm to extract multi-scale short-term behavioral dynamic feature time-series at the frame-level using different time-windows. Then, we encode the time-series of frame-level short-term dynamic features of a whole video into a spectral representation, which encodes multi-scale long-term behavioral dynamic features. Finally, we feed this video-level multi-scale dynamic representations to standard ANN for depression severity estimation. The experiment results achieved on AVEC 2017 dataset show that the proposed multi-scale facial dynamic encoding approach can provide accurate depression severity prediction than most existing methods that did not consider such temporal information.","PeriodicalId":177985,"journal":{"name":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicse55337.2022.9828962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Depression is currently the most common mental health issue that has negative impacts on a large number of people’s life. Although many recent studies proposed to estimate depression severity from human behaviors, the majority of them failed to consider multi-scale behavioral dynamics, which can be crucial clues for depression recognition. In this paper, we propose a novel system that can encode multi-scale short-term and long-term behavioral dynamics for depression recognition. It first extends Dynamic Image Algorithm to extract multi-scale short-term behavioral dynamic feature time-series at the frame-level using different time-windows. Then, we encode the time-series of frame-level short-term dynamic features of a whole video into a spectral representation, which encodes multi-scale long-term behavioral dynamic features. Finally, we feed this video-level multi-scale dynamic representations to standard ANN for depression severity estimation. The experiment results achieved on AVEC 2017 dataset show that the proposed multi-scale facial dynamic encoding approach can provide accurate depression severity prediction than most existing methods that did not consider such temporal information.
基于多尺度面部行为动力学的抑郁症自动识别
抑郁症是目前最常见的心理健康问题,对许多人的生活产生了负面影响。尽管最近有许多研究提出通过人类行为来估计抑郁症的严重程度,但大多数研究都没有考虑到多尺度行为动力学,而多尺度行为动力学是识别抑郁症的关键线索。在本文中,我们提出了一种新的系统,可以编码多尺度的短期和长期行为动态来识别抑郁症。首先对动态图像算法进行扩展,利用不同的时间窗在帧级提取多尺度短期行为动态特征时间序列;然后,我们将整段视频的帧级短期动态特征的时间序列编码为频谱表示,从而编码出多尺度的长期行为动态特征。最后,我们将这种视频级别的多尺度动态表示馈送到标准神经网络中用于抑郁症严重程度估计。在AVEC 2017数据集上的实验结果表明,与大多数不考虑这些时间信息的方法相比,本文提出的多尺度面部动态编码方法可以提供准确的抑郁严重程度预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信