Body-worn fully-passive wireless analog sensors for biopotential measurement through load modulation

S. Consul-Pacareu, David Arellano, B. Morshed
{"title":"Body-worn fully-passive wireless analog sensors for biopotential measurement through load modulation","authors":"S. Consul-Pacareu, David Arellano, B. Morshed","doi":"10.1109/BIOWIRELESS.2015.7152116","DOIUrl":null,"url":null,"abstract":"Fully-passive wireless and disposable bodysensors are promising for unobtrusive monitoring of physiological signals at natural settings. We present a new type of wireless analog passive sensor (WAPS) based on resistive damping, which can be used for biopotential sensing. The resistive WAPS operates by modulating the amplitudes of the incident RF signal, and composes of a loop antenna, a tuning capacitor, and a MOSFET (an additional biasing resistance is used in one variation). The scanner transmits carrier RF signal at 13:34MHz and the load modulated signal is captured with the signal analyzer. The envelope of the modulated signal correlates with the biopotential being sensed. Both enhancement and depletion MOSFETs are demonstrated, where the earlier demonstrated superior performance. The sensitivity can be as low as 10 mV, suitable for ECG and EMG physiological signal capture. The transmission power were 0 dBm while the co-axial separation between antennas were 21.5 mm. The results show that the proposed WAPS can be used to develop disposable biopotential sensor suitable for body-worn physiological signal monitoring system.","PeriodicalId":140312,"journal":{"name":"2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems (BioWireleSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOWIRELESS.2015.7152116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Fully-passive wireless and disposable bodysensors are promising for unobtrusive monitoring of physiological signals at natural settings. We present a new type of wireless analog passive sensor (WAPS) based on resistive damping, which can be used for biopotential sensing. The resistive WAPS operates by modulating the amplitudes of the incident RF signal, and composes of a loop antenna, a tuning capacitor, and a MOSFET (an additional biasing resistance is used in one variation). The scanner transmits carrier RF signal at 13:34MHz and the load modulated signal is captured with the signal analyzer. The envelope of the modulated signal correlates with the biopotential being sensed. Both enhancement and depletion MOSFETs are demonstrated, where the earlier demonstrated superior performance. The sensitivity can be as low as 10 mV, suitable for ECG and EMG physiological signal capture. The transmission power were 0 dBm while the co-axial separation between antennas were 21.5 mm. The results show that the proposed WAPS can be used to develop disposable biopotential sensor suitable for body-worn physiological signal monitoring system.
通过负载调制进行生物电位测量的穿戴式全无源无线模拟传感器
全无源无线和一次性身体传感器有望在自然环境下对生理信号进行不显眼的监测。提出了一种基于电阻阻尼的新型无线模拟无源传感器(WAPS),可用于生物电位传感。电阻式WAPS通过调制入射射频信号的幅度来工作,并由环路天线、调谐电容器和MOSFET(在一个变化中使用额外的偏置电阻)组成。扫描器以13:34MHz的频率传输载波射频信号,用信号分析仪捕获负载调制信号。调制信号的包络与被测生物电位相关。演示了增强型和耗尽型mosfet,其中前者表现出优异的性能。灵敏度可低至10mv,适用于心电和肌电生理信号的捕捉。发射功率为0 dBm,天线间共轴距离为21.5 mm。结果表明,所提出的WAPS可用于研制适用于穿戴式生理信号监测系统的一次性生物电位传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信