A Kalman-based fundamental frequency estimation algorithm

Liming Shi, J. Nielsen, J. Jensen, Max A. Little, M. G. Christensen
{"title":"A Kalman-based fundamental frequency estimation algorithm","authors":"Liming Shi, J. Nielsen, J. Jensen, Max A. Little, M. G. Christensen","doi":"10.1109/WASPAA.2017.8170046","DOIUrl":null,"url":null,"abstract":"Fundamental frequency estimation is an important task in speech and audio analysis. Harmonic model-based methods typically have superior estimation accuracy. However, such methods usually assume that the fundamental frequency and amplitudes are stationary over a short time frame. In this paper, we propose a Kalman filter-based fundamental frequency estimation algorithm using the harmonic model, where the fundamental frequency and amplitudes can be truly nonstationary by modeling their time variations as firstorder Markov chains. The Kalman observation equation is derived from the harmonic model and formulated as a compact nonlinear matrix form, which is further used to derive an extended Kalman filter. Detailed and continuous fundamental frequency and amplitude estimates for speech, the sustained vowel /a/ and solo musical tones with vibrato are demonstrated.","PeriodicalId":128993,"journal":{"name":"2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WASPAA.2017.8170046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Fundamental frequency estimation is an important task in speech and audio analysis. Harmonic model-based methods typically have superior estimation accuracy. However, such methods usually assume that the fundamental frequency and amplitudes are stationary over a short time frame. In this paper, we propose a Kalman filter-based fundamental frequency estimation algorithm using the harmonic model, where the fundamental frequency and amplitudes can be truly nonstationary by modeling their time variations as firstorder Markov chains. The Kalman observation equation is derived from the harmonic model and formulated as a compact nonlinear matrix form, which is further used to derive an extended Kalman filter. Detailed and continuous fundamental frequency and amplitude estimates for speech, the sustained vowel /a/ and solo musical tones with vibrato are demonstrated.
一种基于卡尔曼的基频估计算法
基频估计是语音和音频分析中的一项重要任务。基于谐波模型的方法通常具有较高的估计精度。然而,这种方法通常假定基频和幅值在短时间内是平稳的。在本文中,我们提出了一种基于卡尔曼滤波器的基频估计算法,该算法使用谐波模型,其中基频和幅值可以通过将它们的时间变化建模为一级马尔可夫链而真正是非平稳的。从谐波模型推导出卡尔曼观测方程,并将其表示为紧致非线性矩阵形式,进而推导出扩展卡尔曼滤波器。详细和连续的基本频率和振幅估计语音,持续的元音/a/和独奏音乐音调与颤音演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信