DLPAlign: A Deep Learning based Progressive Alignment Method for Multiple Protein Sequences

Mengmeng Kuang, Yong Liu, Lufei Gao
{"title":"DLPAlign: A Deep Learning based Progressive Alignment Method for Multiple Protein Sequences","authors":"Mengmeng Kuang, Yong Liu, Lufei Gao","doi":"10.1145/3429210.3429221","DOIUrl":null,"url":null,"abstract":"This paper proposed a novel and straightforward approach to improve the accuracy of progressive multiple protein sequence alignment method. We trained a decision-making model based on the convolutional neural networks and bi-directional long short term memory networks, and progressively aligned the input protein sequences by calculating different posterior probability matrices. To evaluate this method, we have implemented a multiple sequence alignment tool called DLPAlign and compared its performance with eleven leading alignment methods on three empirical alignment benchmarks (BAliBASE, OXBench and SABMark). Our results show that DLPAlign can get the best total-column scores on the three benchmarks. When evaluated against the 711 low similarity families with average PID ≤ 30%, DLPAlign improved about 2.8% over the second-best MSA software. Besides, we compared the performance of DLPAlign and other alignment tools on a real-life application, namely protein secondary structure prediction on four protein sequences related to SARS-COV-2, and DLPAlign provides the best result in all cases.","PeriodicalId":164790,"journal":{"name":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CSBio '20: Proceedings of the Eleventh International Conference on Computational Systems-Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3429210.3429221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper proposed a novel and straightforward approach to improve the accuracy of progressive multiple protein sequence alignment method. We trained a decision-making model based on the convolutional neural networks and bi-directional long short term memory networks, and progressively aligned the input protein sequences by calculating different posterior probability matrices. To evaluate this method, we have implemented a multiple sequence alignment tool called DLPAlign and compared its performance with eleven leading alignment methods on three empirical alignment benchmarks (BAliBASE, OXBench and SABMark). Our results show that DLPAlign can get the best total-column scores on the three benchmarks. When evaluated against the 711 low similarity families with average PID ≤ 30%, DLPAlign improved about 2.8% over the second-best MSA software. Besides, we compared the performance of DLPAlign and other alignment tools on a real-life application, namely protein secondary structure prediction on four protein sequences related to SARS-COV-2, and DLPAlign provides the best result in all cases.
DLPAlign:一种基于深度学习的多蛋白质序列渐进比对方法
本文提出了一种新颖、直观的方法来提高渐进式多蛋白序列比对方法的准确性。我们基于卷积神经网络和双向长短期记忆网络训练了一个决策模型,并通过计算不同的后验概率矩阵逐步对齐输入的蛋白质序列。为了评估该方法,我们实现了一个名为DLPAlign的多序列比对工具,并在三个经验比对基准(BAliBASE, OXBench和SABMark)上将其性能与11种领先的比对方法进行了比较。我们的结果表明,DLPAlign可以在三个基准测试中获得最佳的总列分数。当对平均PID≤30%的711个低相似性家族进行评估时,DLPAlign比第二好的MSA软件提高了约2.8%。此外,我们比较了DLPAlign与其他比对工具在实际应用中的性能,即对4个与SARS-COV-2相关的蛋白质序列进行蛋白质二级结构预测,在所有情况下,DLPAlign都提供了最好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信