Artificial Intelligence in Data Analysis for Open-Source Investigations

Teodor-Cristian Radoi
{"title":"Artificial Intelligence in Data Analysis for Open-Source Investigations","authors":"Teodor-Cristian Radoi","doi":"10.1109/ECAI58194.2023.10193894","DOIUrl":null,"url":null,"abstract":"The developed OSINT platform organizes data hierarchically and integrates a GPT model for faster, easier large data processing. Users can interact with the GPT model through natural language communication with a virtual agent for data processing commands. Open source investigations face challenges like vast data volumes and incorrect information. To address these issues, a real-time data processing tool is needed. Our OSINT platform integrates a GPT model trained to learn from data, enhancing the efficiency of open source investigations. We assessed various natural language processing models, focusing on the benefits of pretraining, fine-tuning., and generative models in open source investigations. GPT models excel due to pretraining on extensive text data, allowing fine-tuning for specific tasks and domains., giving investigators a robust tool for text analysis. The generative nature of GPT models benefits OSINT investigations by producing human-like text for extracting insights and identifying patterns. Fine-tuning enables customization to specific domains or topics., increasing accuracy and reliability while reducing time and effort in data analysis. In conclusion., our OSINT platform presents an innovative solution for open source investigations by incorporating a GPT model for efficient information processing. The Davinci model by OpenAI outperforms other evaluated models., enhancing investigation efficiency and maintaining grammatical accuracy. This work highlights the significance of natural language processing models in open source investigations and paves the way for future research.","PeriodicalId":391483,"journal":{"name":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 15th International Conference on Electronics, Computers and Artificial Intelligence (ECAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECAI58194.2023.10193894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The developed OSINT platform organizes data hierarchically and integrates a GPT model for faster, easier large data processing. Users can interact with the GPT model through natural language communication with a virtual agent for data processing commands. Open source investigations face challenges like vast data volumes and incorrect information. To address these issues, a real-time data processing tool is needed. Our OSINT platform integrates a GPT model trained to learn from data, enhancing the efficiency of open source investigations. We assessed various natural language processing models, focusing on the benefits of pretraining, fine-tuning., and generative models in open source investigations. GPT models excel due to pretraining on extensive text data, allowing fine-tuning for specific tasks and domains., giving investigators a robust tool for text analysis. The generative nature of GPT models benefits OSINT investigations by producing human-like text for extracting insights and identifying patterns. Fine-tuning enables customization to specific domains or topics., increasing accuracy and reliability while reducing time and effort in data analysis. In conclusion., our OSINT platform presents an innovative solution for open source investigations by incorporating a GPT model for efficient information processing. The Davinci model by OpenAI outperforms other evaluated models., enhancing investigation efficiency and maintaining grammatical accuracy. This work highlights the significance of natural language processing models in open source investigations and paves the way for future research.
开源调查数据分析中的人工智能
开发的OSINT平台分层组织数据,并集成GPT模型,以便更快,更轻松地处理大数据。用户可以通过与虚拟代理的自然语言通信来与GPT模型进行交互,以执行数据处理命令。开源调查面临着巨大的数据量和不正确的信息等挑战。为了解决这些问题,需要一个实时数据处理工具。我们的OSINT平台集成了一个经过训练的GPT模型,可以从数据中学习,提高开源调查的效率。我们评估了各种自然语言处理模型,重点关注预训练和微调的好处。以及开源调查中的生成模型。GPT模型由于在广泛的文本数据上进行预训练而表现出色,允许对特定任务和领域进行微调。,为调查人员提供了一个强大的文本分析工具。GPT模型的生成特性通过生成类似人类的文本来提取见解和识别模式,从而有利于OSINT调查。微调支持对特定域或主题进行定制。,提高准确性和可靠性,同时减少数据分析的时间和精力。在结论。,我们的OSINT平台通过整合高效信息处理的GPT模型,为开源调查提供了创新的解决方案。OpenAI的达芬奇模型优于其他被评估的模型。,提高调查效率,保持语法的准确性。这项工作强调了自然语言处理模型在开源研究中的重要性,并为未来的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信