A containerized distributed processing platform for autonomous surface vehicles: preliminary results for marine litter detection

Gennaro Mellone, Ciro Giuseppe de Vita, Dante D. Sánchez-Gallegos, D. Di Luccio, G. Mattei, Francesco Peluso, Pietro Patrizio Ciro Aucelli, A. Ciaramella, R. Montella
{"title":"A containerized distributed processing platform for autonomous surface vehicles: preliminary results for marine litter detection","authors":"Gennaro Mellone, Ciro Giuseppe de Vita, Dante D. Sánchez-Gallegos, D. Di Luccio, G. Mattei, Francesco Peluso, Pietro Patrizio Ciro Aucelli, A. Ciaramella, R. Montella","doi":"10.1109/PDP59025.2023.00029","DOIUrl":null,"url":null,"abstract":"Autonomous Surface Vehicles and their management represent one of the significant challenges in coastal and offshore surveying. Although the development of this kind of data acquisition device has skyrocketed in the last few years, line guides and technological solutions still need to come. On the other hand, this kind of robotic vessel's true potential has yet to be explored. This paper presents ArgonautAI, a containerized distributed processing platform for autonomous surface vehicles. The proposed ArgonautAI architecture leverage a cluster of single-board computers with diverse and different characteristics (computing power, CUDA GPUs, FPGAs, GPIOs, PWMs, specialized I/O) orchestrated using Kubernetes and a customized programming interface. Furthermore, the proposed solution introduces two different types of containers: 1) the platform containers hosting the software life support for the platform and 2) the mission containers defined to support the survey mission-specific scopes. The firsts manage the vehicle's instruments (e.g. position, attitude, environment, depth), the data storage, the vessel-to-shore communication, and so on; the latter host mission-specific software components. Finally, as proof of concept of the proposed platform, we present an AI-based marine litter detection application using a hierarchical computer vision approach on heterogenic onboard computing resources.","PeriodicalId":153500,"journal":{"name":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","volume":"337 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 31st Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP59025.2023.00029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous Surface Vehicles and their management represent one of the significant challenges in coastal and offshore surveying. Although the development of this kind of data acquisition device has skyrocketed in the last few years, line guides and technological solutions still need to come. On the other hand, this kind of robotic vessel's true potential has yet to be explored. This paper presents ArgonautAI, a containerized distributed processing platform for autonomous surface vehicles. The proposed ArgonautAI architecture leverage a cluster of single-board computers with diverse and different characteristics (computing power, CUDA GPUs, FPGAs, GPIOs, PWMs, specialized I/O) orchestrated using Kubernetes and a customized programming interface. Furthermore, the proposed solution introduces two different types of containers: 1) the platform containers hosting the software life support for the platform and 2) the mission containers defined to support the survey mission-specific scopes. The firsts manage the vehicle's instruments (e.g. position, attitude, environment, depth), the data storage, the vessel-to-shore communication, and so on; the latter host mission-specific software components. Finally, as proof of concept of the proposed platform, we present an AI-based marine litter detection application using a hierarchical computer vision approach on heterogenic onboard computing resources.
用于自主水面车辆的集装箱分布式处理平台:海洋垃圾检测的初步结果
自主水面车辆及其管理是沿海和近海测量的重大挑战之一。尽管这种数据采集设备的发展在过去几年中突飞猛进,但线路指南和技术解决方案仍然需要出现。另一方面,这种机器人船的真正潜力还有待探索。本文提出了一种面向自主水面车辆的集装箱化分布式处理平台ArgonautAI。提出的ArgonautAI架构利用使用Kubernetes和定制编程接口编排的具有多种不同特性(计算能力,CUDA gpu, fpga, gpio, pwm,专用I/O)的单板计算机集群。此外,提议的解决方案引入了两种不同类型的容器:1)承载平台软件生命支持的平台容器和2)定义支持调查任务特定范围的任务容器。第一种是管理车辆的仪器(例如位置、姿态、环境、深度)、数据存储、船岸通信等;后者承载特定任务的软件组件。最后,作为所提出平台的概念证明,我们提出了一种基于人工智能的海洋垃圾检测应用程序,该应用程序使用异构船上计算资源的分层计算机视觉方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信