Group sensitive Classifier Chains for multi-label classification

Jun Huang, Guorong Li, Shuhui Wang, W. Zhang, Qingming Huang
{"title":"Group sensitive Classifier Chains for multi-label classification","authors":"Jun Huang, Guorong Li, Shuhui Wang, W. Zhang, Qingming Huang","doi":"10.1109/ICME.2015.7177400","DOIUrl":null,"url":null,"abstract":"In multi-label classification, labels often have correlations with each other. Exploiting label correlations can improve the performances of classifiers. Current multi-label classification methods mainly consider the global label correlations. However, the label correlations may be different over different data groups. In this paper, we propose a simple and efficient framework for multi-label classification, called Group sensitive Classifier Chains. We assume that similar examples not only share the same label correlations, but also tend to have similar labels. We augment the original feature space with label space and cluster them into groups, then learn the label dependency graph in each group respectively and build the classifier chains on each group specific label dependency graph. The group specific classifier chains which are built on the nearest group of the test example are used for prediction. Comparison results with the state-of-the-art approaches manifest competitive performances of our method.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In multi-label classification, labels often have correlations with each other. Exploiting label correlations can improve the performances of classifiers. Current multi-label classification methods mainly consider the global label correlations. However, the label correlations may be different over different data groups. In this paper, we propose a simple and efficient framework for multi-label classification, called Group sensitive Classifier Chains. We assume that similar examples not only share the same label correlations, but also tend to have similar labels. We augment the original feature space with label space and cluster them into groups, then learn the label dependency graph in each group respectively and build the classifier chains on each group specific label dependency graph. The group specific classifier chains which are built on the nearest group of the test example are used for prediction. Comparison results with the state-of-the-art approaches manifest competitive performances of our method.
多标签分类的组敏感分类器链
在多标签分类中,标签之间往往存在相关性。利用标签相关性可以提高分类器的性能。目前的多标签分类方法主要考虑全局标签相关性。但是,在不同的数据组上,标签相关性可能是不同的。本文提出了一种简单有效的多标签分类框架,称为组敏感分类器链。我们假设相似的示例不仅具有相同的标签相关性,而且往往具有相似的标签。我们将原始特征空间扩充为标签空间并聚类成组,然后分别学习每组中的标签依赖图,并在每组特定的标签依赖图上构建分类器链。组特定的分类器链是建立在测试样本的最近组上的,用于预测。与最先进的方法的比较结果表明我们的方法具有竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信